[1]孙冬璞,谭洁琼.一种快速全局中心模糊聚类方法[J].哈尔滨理工大学学报,2019,(04):110-117.[doi:10.15938/j.jhust.2019.04.019]
 SUN Dong-pu,TAN Jie-qiong.A Fast Global Center Fuzzy Clustering Method[J].哈尔滨理工大学学报,2019,(04):110-117.[doi:10.15938/j.jhust.2019.04.019]
点击复制

一种快速全局中心模糊聚类方法()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2019年04期
页码:
110-117
栏目:
计算机与控制工程
出版日期:
2019-08-25

文章信息/Info

Title:
A Fast Global Center Fuzzy Clustering Method
文章编号:
1007-2683(2019)04-0110-08
作者:
孙冬璞谭洁琼
(哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080)
Author(s):
SUN Dong-puTAN Jie-qiong
(Department of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)
关键词:
模糊聚类全局中心DKCAM度量噪声点
Keywords:
fuzzy clustering global center DKC AM metric noise point
分类号:
TP311
DOI:
10.15938/j.jhust.2019.04.019
文献标志码:
A
摘要:
针对模糊C均值算法对初始中心敏感、容易陷入局部最优解,且算法迭代速度慢等问题,依据模糊聚类的全局中心理论,建立了一种快速全局中心模糊聚类系统模型,并给出了相关理论分析和算法流程。该模型通过DKC值方案对各数据成员进行密集度分析来确定初始质心,并结合AM度量提出自定义寻优函数,依据该函数在算法运行的每一个阶段来逐一动态增加聚类中心,直至算法收敛。通过实验对比和验证,该过程降低了随机选取聚类中心对聚类结果的影响,跳出局部最优解,减少计算量,具有更高的聚类精度和更快的收敛速度。
Abstract:
In terms of the problems that the fuzzy C-means algorithm is sensitive to the initial center, easy to fall into the local optimal solution, and the algorithm iteration speed is slow, a rapid global center fuzzy clustering system model is established according to the global center theory of fuzzy clustering, and the relevant theoretical analysis and algorithm process is given. In the model, the initial centroid is determined by the DKC value scheme, and the self-defined optimization function is proposed based on the AM metric. According to this function, the cluster centers are dynamically added one by one to every stage of algorithm operation until the algorithm converges. Through experimental comparison and verification, the process reduces the influence of random selection of cluster centers on clustering results, and jumps out of local optimal solution, reduces computation, and has higher clustering accuracy and faster convergence speed.

参考文献/References:

[1]SANAKAL R, JAYAKUMARI T. Prognosis of Diabetes Using Data Mining Approachfuzzy C Means Clustering and Support Vector Machine[J]. Int. J. Comput. Trends Technol.(IJCTT), 2014, 11(2): 94.
[2]LIU L, SUN S Z, YU H, et al. A Modified Fuzzy CMeans (FCM) Clustering Algorithm and Its Application on Carbonate Fluid Identification[J]. Journal of Applied Geophysics, 2016, 129:28.
[3]吴明阳, 张芮, 岳彩旭,等. 应用Kmeans聚类算法划分曲面及实验验证[J]. 哈尔滨理工大学学报, 2017(1):54.
[4]武俊峰, 艾岭. 一种基于改进聚类算法的模糊模型辨识[J]. 哈尔滨理工大学学报, 2010, 15(3):1.
[5]NAYAK J, NAIK B, KANUNGO D P, et al. A Hybrid Elicit Teaching Learning Based Optimization with Fuzzy Cmeans (ETLBOFCM) Algorithm for Data Clustering[J]. Ain Shams Engineering Journal, 2016(5):148.
[6]FILHO T M S, PIMENTEL B A, SOUZA R M C R, et al. Hybrid Methods for Fuzzy Clustering Based on Fuzzy Cmeans and Improved Particle Swarm Optimization[J]. Expert Systems with Applications, 2015, 42(17):6315.
[7]PAN X, LIU P, REN M, et al. Optimization of fuzzy Cmeans based on OBLgenetic algorithm[C]//Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNCFSKD), 2016 12th International Conference on. IEEE, 2016: 109.
[8]YE A X, JIN Y X. A Fuzzy CMeans Clustering AlgorithmBasedon Improved Quantum Genetic Algorithm[J]. International Journal of Database Theory and Application, 2016, 9(1): 227.
[9]LIU P,DUAN L, CHI X, et al. An Improved Fuzzy Cmeans Clustering Algorithm Based on Simulated Annealing[C]//Fuzzy Systems and Knowledge Discovery (FSKD), 2013 10th International Conference on. IEEE, 2013: 39.
[10]陈加顺, 皮德常. 一种非噪声敏感性的模糊C均值聚类算法[J]. 小型微型计算机系统, 2014, 35(6):1427.
[11]WANG W, ZHANG Y, LI Y, et al. The Global Fuzzy Cmeans Clustering Algorithm[C]//2006 6th World Congress on Intelligent Control and Automation. IEEE, 2006, 1:3604.
[12]任培花, 王丽珍. 不确定域环境下基于DKC值改进的Kmeans聚类算法[J]. 计算机科学, 2013, 40(4):181.
[13]WU K L, YANG M S. Alternative Cmeans Clustering Algorithms[J]. Pattern Recognition, 2002, 35(10):2267.
[14]李远成, 阴培培, 赵银亮. 基于模糊聚类的推测多线程划分算法[J]. 计算机学报, 2014, 37(3):580.
[15]谢娟英, 蒋帅, 王春霞,等. 一种改进的全局K-均值聚类算法[J]. 陕西师范大学学报:自然科学版, 2010,38(2):18.
[16]ZHANG Daoqiang, Chen. A Comment on “Alternative Cmeans Clustering Algorithms”[J]. Pattern Recognition, 2004, 37(2):173.
[17]RASTGARPOUR M, ALIPOUR S, SHANBEHZADEH J. Improved Fast Two Cycle by using KFCM Clustering for Image Segmentation[J]. Lecture Notes in Engineering & Computer Science, 2012, 2195(1).
[18]AHMAD A,DEY L. A Kmean Clustering Algorithm for Mixed Numeric and Categorical Data[J]. Data & Knowledge Engineering, 2007, 63(2):503.
[19]BEZDEK J C. A Physical Interpretation of Fuzzy ISODATA[J]. IEEE Transactions on Systems Man & Cybernetics, 1976, 6(5):615.
[20]VANI H Y,ANUSUYA M A. Isolated Speech Recognition Using Fuzzy C Means Technique[C]// International Conference on Emerging Research in Electronics, Computer Science and Technology. IEEE, 2016:352-357.

备注/Memo

备注/Memo:
?收稿日期: 2017-05-15
基金项目: 黑龙江省自然科学基金(F2017015,F201302)
作者简介: 谭洁琼(1994—),女,硕士
通信作者: 孙冬璞(1979—),女,博士,副教授,E-mail:sundongpu@sina.com
更新日期/Last Update: 2019-09-04