[1]李九如,李铭坤,陈巨辉. 鼓泡流化床气固两相流动特性数值模拟[J].哈尔滨理工大学学报,2019,(04):47-52.[doi:10.15938/j.jhust.2019.04.008]
 LI Jiu ru,LI Ming kun,CHEN Ju hui. Numerical Simulation of Gassolid Twophase Flow Characteristics in Bubbling Fluidized Bed[J].哈尔滨理工大学学报,2019,(04):47-52.[doi:10.15938/j.jhust.2019.04.008]
点击复制

 鼓泡流化床气固两相流动特性数值模拟()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2019年04期
页码:
47-52
栏目:
机械动力工程
出版日期:
2019-08-25

文章信息/Info

Title:
 Numerical Simulation of Gassolid Twophase Flow Characteristics in Bubbling Fluidized Bed
文章编号:
1007-2683(2019)04-0047-06
作者:
 李九如李铭坤陈巨辉
 (哈尔滨理工大学 机械动力工程学院,黑龙江 哈尔滨 150080)
Author(s):
 LI JiuruLI MingkunCHEN Juhui
 (School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China)
关键词:
 鼓泡流化床双流体模型气固两相流数值模拟
Keywords:
 bubbling fluidized bed two-fluid model gas-solid two-phase flow numerical simulation
分类号:
TK 229
DOI:
10.15938/j.jhust.2019.04.008
文献标志码:
A
摘要:
 为了研究鼓泡流化床内气固两相流动特性,采用数值模拟的方法,对Fushimi等人的冷态实验过程进行模拟,建立了合理的TBCFB气化炉气固两相流动系统模型,基于欧拉双流体模型,以ANSYS嵌套的FLUENT170,作为数值模拟计算的基础平台,模拟TBCFB(三级流化床)气化炉系统中鼓泡流化床气固两相流动过程及分析其流动特性。结果主要分为3部分:鼓泡床表观速度对流动质量有重要影响,速度越低,越有利于床内气泡与床料充分接触;比较不同高度,不同配比两种颗粒温度变化特点,发现床层高度越高,颗粒温度越大;颗粒浓度增加,其颗粒温度降低,反之增加。
Abstract:
 In order to study the gas-solid two-phase flow characteristics in bubbling fluidized bed reactor, the numerical simulation method, the Fushimi, to simulate the process of cold experiments, we set up reasonable TBCFB gasifier model of gas-solid two-phase flow, based on eulerian two-fluid model, nested FLUENT17.0 with ANSYS, as the basis of numerical simulation platform, the simulation TBCFB (level 3 fluidized bed gasifier bubbling fluidized bed gas-solid two-phase flow in the system process and analyze the flow characteristics. The results are mainly divided into three parts: the surface velocity of the bubbling bed has an important influence on the flow quality, and the lower the speed, the more favorable the bubbles in the bed are in contact with the bed material. It is found that the higher the height of the bed is, the higher the particle temperature is. The particle concentration increases, the particle temperature decreases, and vice versa.

参考文献/References:

[1]贲兴振,杨宝臣. 中国能源消费和经济增长的协整关系分析[J].哈尔滨理工大学学报,2005,10(4) :117.
[2]吕薇,刘瑞春,高强,等. 秸秆成型燃料的研制及其燃烧特性实验[J]. 哈尔滨理工大学学报,2015,20(4):51.
[3]吴晓华,宋二波,贾尚伟. 基于SWOT分析的我国洁净煤技术发展研究[J]. 洁净煤技术,2015,21(1):24.
[4]高杨,肖军,沈来宏. 串行流化床生物质气化制取富氢气体模拟研究[J]. 太阳能学报,2008,29(7):894.
[5]ASKARISHAHI M, SALEHI M S, GODINI H R, et al. CFD study on solids flow pattern and solids mixing characteristics in bubbling fluidized bed:Effect of fluidization velocity and bed aspect ratio[J]. Powder Technology, 2015, 274:379.
[6]方梦祥,施正展,王树荣,等. 双流化床物料循环系统的实验研究[J]. 农业机械学报,2003,34(6):54.
[7]R.JACKSON. The mechanics of fluidized beds[J].Trans. Inst.Chem. Eng.,1963:3.
[8]DASGUPTA S,JACKSONR,SUNDARESAN S.Turbulent gas particle flow in verticle risers[J].AIChE J,1997,43( 4) :853.
[9]曹玉春,吴金星,李言钦. 基于欧拉-欧拉模型的气固鼓泡床数值模拟研究[J]. 热力发电,2008,37(11):35.
[10]李斌. 流化床炉内颗粒混合的离散单元法数值模拟[J]. 中国电机工程学报,2012,32(20):42.
[11]王帅,于文浩,陈巨辉,等.鼓泡流化床中流动特性的多尺度数值模拟[J].力学学报,2016,48(3):585.
[12]YU Liang,LU Jing,ZHANG Xiangping,et al.Numericalsimulation of the bubbling fluidized bed coal gasification by the kinetic theory of granularflow (KTGF)[J].Fuel,2007, 86(5/6): 722.
[13]卢志明,朱沈瑾,石来民,等. 单喷管鼓泡流化床流动特性的数值模拟[J]. 燃烧科学与技术,2015,5(21):1006.
[14]马腾波. TBCFB中鼓泡流化床的流体力学模拟及其进料系统压力分析[D]. 太原理工大学,2016.
[15]FUSHIMI C,ISHIZUKA M,GUAN G,et al. Hydrodynamic behavior of binary mixture of solids in a triplebed combined circulating fluidized bed with high mass flux[J]. Adv. Powder Technol.,2013,25:379.
[16]刘荣正,刘马林,邵友林,等.流化床-化学气相沉积技术的应用及研究进展[J].化工进展,2016,35(5):1263.
[17]吕薇,李彦栋,李瑞扬,等. 生物质秸秆颗粒气流干燥试验研究及数值模拟[J].哈尔滨理工大报,2011,16(5):39.
[18]李九如,杨黎.安装新风换气机房流场及温度场数值模拟研究[J].哈尔滨理工大学学报,2009,14(5):128.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(04):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(04):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(04):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(04):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(04):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(04):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(04):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(04):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(04):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(04):18.

备注/Memo

备注/Memo:
 收稿日期: 2017-06-15
基金项目: 国家自然科学基金(51406045);黑龙江省自然科学基金(E201441);黑龙江省大学生创新创业训练计划项目(201610214078)
作者简介:
李九如(1970—),男,博士,教授;
李铭坤(1995—),男,硕士研究生
通信作者:
陈巨辉(1982—),女,博士,副教授,E-mail:chenjuhui@hit.edu.cn
更新日期/Last Update: 2019-09-03