[1]王亚萍,李士松,葛江华,等. 等距离映射和模糊C均值的滚动轴承故障识别[J].哈尔滨理工大学学报,2019,(03):41-47.[doi:10.15938/j.jhust.2019.03.007]
 WANG Ya-ping,LI Shi-song,GE Jiang-hua,et al. Rolling Bearing with Isometric Feature Mapping and Fuzzy Cmeans Fault Identification Method[J].哈尔滨理工大学学报,2019,(03):41-47.[doi:10.15938/j.jhust.2019.03.007]
点击复制

 等距离映射和模糊C均值的滚动轴承故障识别()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2019年03期
页码:
41-47
栏目:
机械动力工程
出版日期:
2019-06-24

文章信息/Info

Title:
 Rolling Bearing with Isometric Feature Mapping  and Fuzzy Cmeans Fault Identification Method
文章编号:
1007-2683(2019)03-0041-07
作者:
 王亚萍李士松葛江华许迪李云飞
 (哈尔滨理工大学 机械动力工程学院,黑龙江 哈尔滨 150080)
Author(s):
 WANG Ya-pingLI Shi-songGE Jiang-huaXU DiLI Yun-fei
(School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China)
 
关键词:
 滚动轴承故障识别特征降维ISOMAP算法模糊C均值
Keywords:
 rolling bearings fault identification feature dimensionality reduction ISOMAP algorithm fuzzy C mean
分类号:
TH165+.3;TN911.7
DOI:
10.15938/j.jhust.2019.03.007
文献标志码:
A
摘要:
 在滚动轴承的故障识别中,针对传统的等距离映射ISOMAP算法存在测地距离的计算偏差较大,故障识别部分混叠的问题,提出一种模糊C均值和等距离映射的滚动轴承故障识别方法。首先,对ISOMAP算法中的邻域大小k值用残差进行改进,保证映射结果很好地反映全局性质;其次可分性评价指标评价特征降维的效果;然后,采用了模糊C均值聚类方法,保证在拓扑空间中高维流形数据与低维空间光滑流形中的数据仍保持相近或相同的特性。最后,通过采集不同损伤程度下的滚动轴承振动数据进行实验验证,结果表明本文方法在分类效果和识别精度都有了明显的提升。
Abstract:
 In the fault identification of rolling bearing, the traditional ISOMAP algorithm is met with the problem of large deviation of geodesic distance and aliasing in fault identification. So, this paper presents a fuzzy   C  means  and Isometric Feature Mapping of rolling bearing fault identification method. First of all, the neighborhood size k of ISOMAP algorithm is improved with residuals to ensure that the mapping results reflect the global nature well. Second, the index of category divisibility is used to evaluate the effect of feature dimensionality reduction. Then, a fuzzy Cmeans clustering method is adopted to ensure that the data in high dimensional manifolds and the low dimensional smooth manifold in the topological space are still close or the same. Finally, the experimental verification of vibration data of rolling bearing with different damage degrees shows that the combination of fuzzy  C means and improved ISOMAP has obvious improvement in both classification and identification accuracy.

参考文献/References:

[1]王亚萍,许迪,葛江华,等. 基于SPWVD时频图纹理特征的滚动轴承故障诊断[J]. 振动.测试与诊断,2017,(1):115.
[2]时献江,罗建,宫秀芳.无传感器诊断方法及在风力发电中的应用与展望[J].哈尔滨理工大学学报,2014,19(6):82.
[3]杜冬梅, 张昭, 李红. 基于LMD和增强动包络谱的滚轴承故障分析[J]. 振动、测试与诊断, 2017,37(1):92.
[4]TENENBAUM J B, SILVA V D, LANGFORD J C.A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science,2000,290:2319.
[5]ROWEIS S T,SAUL L K.Nonlinear Dimensionality Reduction by Locally Linear Embedding[J]. Science,2000,290:2323.
[6]李城梁,王仲生,姜洪开,等. 自适应Hessian LLE在机械故障特征提取中的应用[J]. 振动工程学报,2013(5):758.
[7]王奉涛, 陈旭涛, 闫达文,等. 流形模糊C均值方法及其在滚动轴承性能退化评估中的应用[J]. 机械工程学报, 2016, 52(15):59.
[8]姜万录, 王浩楠, 朱勇,等. 变分模态分解消噪与核模糊C均值聚类相结合的滚动轴承故障识别方法[J]. 中国机械工程, 2017, 28(10):1215.
[9]郑直, 姜万录, 胡浩松,等. 基于EEMD形态谱和KFCM聚类集成的滚动轴承故障诊断方法研究[J]. 振动工程学报, 2015(2):324.
[10]蒋永华, 李荣强, 焦卫东. 应用EMD和双谱分析的故障特征提取方法[J]. 振动、测试与诊断, 2017, 37(2):338.
[11]岳巧珍,张洪鑫,时献江.齿轮故障诊断信息提取复合方法研究[J].煤矿机械,2016,37(2):183.
[12]李媛媛,陈捷,洪荣晶,等.基于模糊C均值的转盘轴承剩余寿命预测[J].轴承,2017(3):50.
[13]刘来权,陈燕,雷燕瑞.模糊C均值聚类算法的有效性检验研究[J].软件,2017,38(2):16.
[14]王军辉,贾嵘,谭泊.基于EEMD和模糊C均值聚类的风电机组齿轮箱故障诊断[J].太阳能学报,2015,36(2):319.
[15]邓延丽,金炜东,李家会,等.基于聚集离散性与可分性的雷达信号特征评价[J].计算机应用,2013,33(7):1946.
[16]蒋栋年,李炜.基于数据驱动残差评价策略的故障检测方法[J].控制与决策,2017,32(7):1181.
[17]周卫庆,司风琪,徐治皋,等.基于KPCA残差方向梯度的故障检测方法及应用[J].仪器仪表学报,2017,38(10):2518.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(03):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(03):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(03):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(03):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(03):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(03):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(03):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(03):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(03):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(03):18.

备注/Memo

备注/Memo:
 收稿日期: 2018-01-29
基金项目: 国家自然科学基金资助(51575143);黑龙江省自然科学基金资助(E2016046)
作者简介:
李士松(1996—),男,硕士;
葛江华(1963—),女,教授
通信作者:
王亚萍(1972—),女,教授,E-mail:wypb1@163.com.
更新日期/Last Update: 2019-06-20