[1]洪港,樊丽颖,宋婧婧,等. Banach空间中的一个新算子-kUKK算子[J].哈尔滨理工大学学报,2019,(02):135-138.[doi:10.15938/j.jhust.2019.02.020]
 HONG Gang,FAN Li ying,SONG Jing jing,et al. A New kUKK Operator in Banach Spaces[J].哈尔滨理工大学学报,2019,(02):135-138.[doi:10.15938/j.jhust.2019.02.020]
点击复制

 Banach空间中的一个新算子-kUKK算子()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2019年02期
页码:
135-138
栏目:
数理科学
出版日期:
2019-04-25

文章信息/Info

Title:
 A New kUKK Operator in Banach Spaces
文章编号:
1007-2683(2019)02-0135-04
作者:
 洪港1樊丽颖2宋婧婧2王萍2
 (1.黑龙江东方学院 基础部,黑龙江 哈尔滨 150066; 2.哈尔滨理工大学 理学院,黑龙江 哈尔滨 150080)
Author(s):
 HONG Gang1FAN Liying2SONG Jingjing2WANG Ping2
 (1.Department of Basic Courses, Heilongjiang Oriental College, Harbin 150066, China;
2.School of Science, Harbin University of Science and Technology, Harbin 150080, China)
关键词:
 kUKK性质 Banach空间 kUKK算子 kNUC算子
Keywords:
 kUKKproperties Banach Space kUKK Operator kNUC operator
分类号:
O177
DOI:
10.15938/j.jhust.2019.02.020
文献标志码:
A
摘要:
 为了研究Banach空间中的一些几何性质,给出一个新的几何性质kUKK,根据其定义给出了kNUC算子和kUKK算子的定义; 证明了kNUC算子与kUKK算子的关系;Banach空间中的算子是kNUC的充要条件是自反且T为kUKK;讨论了kUKK算子的性质,最后研究了kUKK算子与具有kUKK性质之间的关系。
Abstract:
 In order to study some geometric properties in Banach space, a new geometric property kUKK is given The definition of kUKK operator and kNUC operator is given according to its definitionThe relation between kUKK operator and kNUC operator is proved The sufficient and necessary conditions for the operator in Banach space to be kNUC are reflexive and kUKK; The properties of kUKK operators are discussed Finally, the relationship between kUKK operators and kUKK properties is studied.

参考文献/References:

[1]DILWORTH S J, KUTZAROVA D, LOVASOA Randrianarivony N, et al. Compactly Uniformly Convex Spaces and Property (beta) of Rolewicz[J]. Journal of Mathematical Analysis & Applications, 2013, 402(1):297.
[2]刘臣伟. 自反空间的性质和应用[J]. 贵州科学, 2015, 33(4):9.
[3]崔云安.Banach空间几何理论及应用[M]. 北京:科学出版社, 2010.
[4]俞鑫泰.Banach空间几何理论[M].上海:华东师范大学出版社,1986:233.
[5]定光桂.巴拿赫空间引论[M]. 北京:科学出版社,1984.
[6]张恭庆, 林源渠. 泛函分析讲义[M]. 北京: 北京大学出版社, 1987.
[7]HUFF R. Banach Spaces Which are Nearly Uniformly Convex[J].Rocky Montain J Math,1980,10(4):43. 
[8]苏雅拉图,乌敦其其格,包来友. k接近一致凸空间的对偶空间.数学物理学报,2011,31(A3):805.
[9]J.GARCIAFALSET. Journal of Functional Analysis[J]. 2006,233:494.
[10]方习年,王建华. 凸性和BanachSaks性质[J].数学物理学报,2002,22(A3):297.
[11]徐洪坤.(NUC)空间的一种推广[J].上海第二工业大学学报,1986(1):27.
[12]GARCIAFALSET J. The Fixed Point Property in Banach Spaces with NUS Property[J]. J.Math Anal,1997(215):532.
[13]KUTZAROVA D N,LIN B L. Locally kNearly Uniformly Convex Banach Spaces[J]. Math Balkanica Fasc,1994,8(2/3):203.
[14]段丽芬,庄彩彩. 赋广义Orlicz范数的Orlicz序列空间的UKK性质[J].通化师范学院学报,2014(4):15.
[15]CLARKSON J. A. Uniformly Convex Spaces[J]. Trans. Amer. Math. Soc,1936,40:396.
[16]AMOUCH M. A Spectral Analysis of Linear Operator Pencils on Banach Spaces with Application to Quotient of Bounded Operators[J]. International Journal of Analysis & Applications, 2015, 7(2): 49.
[17]樊丽颖, 张佳宁, 曹丽萍,等. Banach空间的β算子[J]. 哈尔滨理工大学学报, 2018(2):140.
[18]ZHANG X. Fixed Point Theorem of Generalized Operator Quasicontractive Mapping in Cone Metric Space[J]. Afrika Matematika, 2014, 25(1):135.
[19]ZHANG X. Fixed Point Theorem of Generalized Operator Quasicontractive Mapping in Cone Metric Space[J]. Afrika Matematika, 2014, 25(1):135.
[20]刘红玉. Banach不动点定理的推广及应用[J]. 广东石油化工学院学报, 2015(3): 75.
[21]PHUENGRATTANA W, SUANTAI S. Common Fixed Points of an Infinite Family of Nonexpansive mappings in Uniformly Convex Metric Spaces[J]. Mathematical & Computer Modelling, 2013, 57(3/4):306.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(02):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(02):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(02):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(02):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(02):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(02):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(02):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(02):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(02):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(02):18.

备注/Memo

备注/Memo:
 

收稿日期:2018-12-27
基金项目:黑龙江省自然科学基金(2018006).
作者简介:
洪港(1980—),男,硕士,副教授
通信作者:
樊丽颖(1977—),女,博士,副教授,E-mail:fan_liying@163.com



更新日期/Last Update: 2019-05-17