[1]王莉莉,冯其帅,陈德运,等. 一种基于正则化判别分析的迁移学习算法[J].哈尔滨理工大学学报,2019,(02):89-95.[doi:10.15938/j.jhust.2019.02.013]
 WANG Li li,FENG Qi shuai,CHEN De yun,et al. A Transfer Learning Algorithm Based on Regularized Discriminant Analysis[J].哈尔滨理工大学学报,2019,(02):89-95.[doi:10.15938/j.jhust.2019.02.013]
点击复制

 一种基于正则化判别分析的迁移学习算法()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2019年02期
页码:
89-95
栏目:
计算机与控制工程
出版日期:
2019-04-25

文章信息/Info

Title:
 A Transfer Learning Algorithm Based on Regularized Discriminant Analysis
文章编号:
1007-2683(2019)02-0089-07
作者:
 王莉莉冯其帅陈德运杨海陆
 (哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080)
Author(s):
 WANG LiliFENG QishuaiCHEN DeyunYANG Hailu
 (School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)
关键词:
 迁移学习判别分析正则化半监督学习
Keywords:
 transfer learning discriminant analysis regularization semisupervised learning
分类号:
TP181
DOI:
10.15938/j.jhust.2019.02.013
文献标志码:
A
摘要:
 针对大多数基于实例的迁移学习方法容易产生分布参数估计困难和泛化效果差的问题,提出一种正则化判别迁移学习算法。依据判别分析和半监督学习理论,采用核方法和正则化方法,研究了基于正则化的高斯核半监督判别分析方法,以构造修正嵌入空间的方式进行样本迁移。一方面,在映射空间中筛选样本可克服估计分布参数的困难;另一方面,引入伪标记数据和定义距离函数可避免过拟合问题。文本和非文本数据集上的实验结果验证了所提算法能够有效提高迁移的正确率及学习模型的泛化能力。
Abstract:
 Aiming at the problem that most instancebased transfer learning methods are difficult to estimate the distribution parameters and having poor generalization ability, a regularized discriminant transfer learning algorithm is proposed Based on the discriminant analysis and semisupervised learning theory, the semisupervised Gauss kernel discriminant analysis method is studied by kernel method and regularization method, and the reusable samples are transferred by constructing the revised embedding space On the one hand, screening samples in the mapping space can solve the difficulty of estimating the parameters of domain distribution; on the other hand, introducing pseudolabeled data and defining the distance function can avoid overfitting problems The experimental results on text and nontext datasets validate that the proposed algorithm can effectively improve the accuracy and generalization ability of transferring.

参考文献/References:

[1]PAN S J, YANG Q. A Survey on Transfer Learning[J].IEEE Transaction on Knowledge and Data Engineering,2010,22(10):1345.
[2]BHATT H, SINGH R, VATSA M, et al. Improving Crossresolution Face Matching Using Ensemble Based CoTransfer Learning[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2014,23(12):5654.
[3]MCGAUGHEY G, WALTERS W P, GOLDMAN B. Understanding Covariate Shift in Model Performance[J].F1000 Research,2016,11(5):597.
[4]SUGIYAMA M, NAKAJIMA S, KASHIMA H. Direct Importance Estimation with Model Selection and Its Application to Covariate Shift Adaptation[J].Advances in Neural Information Processing Systems,2007,13(6):1433.
[5]TIAN Y, QI Z, JU X, et al. Nonparallel Support Vector Machines for Pattern Classification[J].IEEE Transactions on Cybernetics,2014,44(7):1067.
[6]SIDDIQI M H, ALI R, IDRIS M, et al. Human Facial Expression Recognition Using Curvelet Feature Extraction and Normalized Mutual Information Feature Selection[J]. Multimedia Tools and Applications,2016,75(2):935.
[7]王万良, 邱红, 黄琼芳, 等. 核判别随机近邻嵌入分析方法[J].计算机辅助设计与图形学学报,2014,25(4):623.
[8]汪廷华, 陈峻婷. 核函数的选择研究综述[J].计算机工程与设计,2012,33(3):1181.
[9]姜伟, 李健芳, 杨炳儒. 黎曼流形框架上半监督判别分析[J].计算机辅助设计与图形学学报,2014,26(7):1099.
[10]周志华. 半监督学习中的协同训练算法[M].北京,清华大学出版社,2007:259.
[11]YANG Y, HUANG Z. Local Image Tagging via Graph Regularized Joint Group Sparsity[J]. Pattern Recognition,2013,46(5):1358.
[12]张战成, 王士同, 邓赵红. 支持向量机的一种快速分类算法[J].电子与信息学报,2011,33(9):2181.
[13]王骏, 王士同, 王晓明. 基于特征加权距离的双指数模糊子空间聚类算法[J].控制与决策,2010,25(8):1207.
[14]许敏, 王士同, 顾鑫. TLSVM:一种迁移学习算法[J].控制与决策,2014,29(1):141.
[15]张变兰, 路永钢, 张海涛. 基于KL散度和近邻点间距离的球面嵌入算法[J].计算机应用,2017,37(3):680.
[16]MEHTA A K, BHATTACHARYA K, RAY D. Application of Support Vector Network for Power System Static Security Evaluation[J].International Journal of Energy Optimization & Engineering,2015,4(1):55.
[17]TAN Q, DENG H, YANG P. Knowledge Transfer Across Different Domain Data with Multiple Views[J].Neural Computing and Applications,2014,25(1):15.
[18]DAI W Y, YANG Q, XUE G, et al. Boosting for Transfer Learning[C]//Proceedings of the 24th International Conference on Machine Learning.New York:Academic Press,2007:193.
[19]WU J, HAO Y. Linear Regressionbased Efficient SVM Learning for Largescale Classification[J]. IEEE Transactions on Neural Networks & Learning Systems,2015,26(10):2357.
[20]JIANG L, WANG D, CAI Z, et al. Survey of Improving Naive Bayes for Classification[J]. Lecture Notes in Computer Science,2007,46(32):134.
[21]洪佳明, 陈炳超, 印鉴. 一种结合半监督Boosting方法的迁移学习算法[J].小型微型计算机系统,2011,32(11):2169.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(02):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(02):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(02):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(02):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(02):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(02):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(02):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(02):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(02):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(02):18.

备注/Memo

备注/Memo:
 收稿日期:2017-03-30
基金项目:黑龙江省自然科学基金(F2016024)
作者简介:
冯其帅(1991—),男,硕士研究生;
陈德运(1962—),男,博士,教授,博士研究生导师
通信作者:
王莉莉(1980—),女,博士,副教授,硕士研究生导师,E-mail :wanglili@hrbust.edu.cn
更新日期/Last Update: 2019-05-17