[1]李成严,曹克翰,冯世祥,等. 不确定执行时间的云计算资源调度[J].哈尔滨理工大学学报,2019,(01):85-91.[doi:10.15938/j.jhust.2019.01.014]
 LI Cheng yan,CAO Ke han,FENG Shi xiang,et al. Resource Scheduling with Uncertain Execution Time in Cloud Computing[J].哈尔滨理工大学学报,2019,(01):85-91.[doi:10.15938/j.jhust.2019.01.014]
点击复制

 不确定执行时间的云计算资源调度
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2019年01期
页码:
85-91
栏目:
计算机与控制工程
出版日期:
2019-02-25

文章信息/Info

Title:
 Resource Scheduling with Uncertain Execution Time in Cloud Computing

作者:
 李成严曹克翰冯世祥孙巍
(哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080)
Author(s):
 LI ChengyanCAO KehanFENG ShixiangSUN Wei
 (School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)
关键词:
 关键词:云计算资源调度模糊规划混沌扰动
Keywords:
 Keywords:cloud computing resource scheduling fuzzy programming chaotic disturbance
分类号:
TP399
DOI:
10.15938/j.jhust.2019.01.014
文献标志码:
A
摘要:
 摘要:针对执行时间不确定情况下的云计算资源调度问题,基于模糊规划理论建立了时间-成本约束条件下的模糊云资源调度模型,使用三角模糊数表示不确定的任务执行时间,以最小化评价函数的平均值和不确定度作为调度目标。提出一种改进的混沌蚁群算法对模型进行求解,算法引入精英策略优化了信息素的更新,采用折叠次数无穷大的混沌映射进行混沌搜索,并设计了自适应混沌扰动机制以增强算法的全局搜索能力。在Cloudsim平台上用仿真数值实例对模型和算法进行验证,证明了模型的可靠性,实验结果表明改进算法在收敛速度、求解能力和负载均衡上均有较好的性能。
Abstract:
 Abstract:For the problem of cloud computing resource scheduling, based on the fuzzy programming theory, a fuzzy cloud resource scheduling model under timecost constraint was set up, the uncertain execution time of tasks is represented by the triangular fuzzy number, and the target is to minimize the average value and standard deviation of the evaluation function An improved chaotic ant colony algorithm was proposed to solve the model, the elitist strategy is introduced to optimize the pheromone updating, a chaotic mapping with infinite folding times is used for chaotic search, and the adaptive chaotic disturbance mechanism is designed to enhance the global searching ability The model and algorithm were tested on the Cloudsim platform, the reliability of the model was proved, and the experimental results showed that the proposed algorithm had better performance in convergence speed, solution ability and load balance

参考文献/References:

[1]JULA A, SUNDARARAJAN E, OTHMAN Z. Cloud Computing Service Composition: A Systematic Literature Review[J]. Expert Systems with Applications, 2014, 41(8): 3809.
[2]RIMAL B P, JUKAN A, KATSAROS D, et al. Architectural Requirements for Cloud Computing Systems: An Enterprise Cloud Approach[J]. Journal of Grid Computing, 2011, 9(1): 3.
[3]ABDULLAHI M, NGADI M A, ABDULHAMID S M. Symbiotic Organism Search Optimization Based Task Scheduling in Cloud Computing Environment[J]. Future Generation Computer SystemsThe International Journal of Escience, 2016, 56: 640.
[4]YAO G S, DING Y S, JIN Y C, et al. Endocrinebased Coevolutionary Multiswarm for Multiobjective Workflow Scheduling in a Cloud System[J]. Soft Computing, 2017, 21(15): 4309.
[5]KAMALINIA A, GHAFFARI A. Hybrid Task Scheduling Method for Cloud Computing by Genetic and DE Algorithms[J]. Wireless Personal Communications, 2017, 97(4): 6301.
[6]KIM J, KIM T, PARK M, et al. FuzzyBased Resource Reallocation Scheduling Model in Cloud Computing[J]. Lecture Notes in Electrical Engineering, 2014, 301: 43.
[7]SHOJAFAR M, JAVANMARDI S, ABOLFAZLI S. FUGE: A Joint Metaheuristic Approach to Cloud Job Scheduling Algorithm Using Fuzzy Theory and a Genetic Method[J]. Cluster ComputingThe Journal of Networks Software Tools and Applications, 2015, 18(2): 829.
[8]HASSAN M A, KACEM I, MARTIN S, et al. Genetic Algorithms for Job Scheduling in Cloud Computing[J]. Studies in Informatics & Control, 2015, 24(4): 387.
[9]SADHASIVAM N, THANGARAJ P. Design of an Improved PSO Algorithm for Workflow Scheduling in Cloud Computing Environment[J]. Intelligent Automation & Soft Computing, 2016,31(8): 493.
[10]HU X X, ZHOU X W. Improved Ant Colony Algorithm on Scheduling Optimization of Cloud Computing Resources[J]. Applied Mechanics & Materials, 2014, 678: 75.
[11]ZHONG Z F, CHEN K, ZHAI X J, et al. Virtual MachineBased Task Scheduling Algorithm in a Cloud Computing Environment[J]. Tsinghua Science and Technology, 2016, 21(6): 660.
[12]MA Y, WANG Y. Grid Task Scheduling Based on Chaotic Ant Colony Optimization Algorithm[C]// International Conference on Computer Science and Network Technology. IEEE, 2013: 469.
[13]YOUSEFIKHOSHBAKHT M, DIDEHVAR F, RAHMATI F. An Efficient Solution for the VRP by Using a Hybrid Elite Ant System[J]. International Journal of Computers Communications & Control, 2014, 9(3): 340.
[14]BENTRCIA T, MOUSS L H, MOUSS N K, et al. Evaluation of Optimality in the Fuzzy Single Machine Scheduling Problem Including Discounted Costs[J]. International Journal of Advanced Manufacturing Technology, 2015, 80(5-8): 1369.
[15]BALIN S. Nonidentical Parallel Machine Scheduling with Fuzzy Processing Times Using Genetic Algorithm and Simulation[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(9-12): 1115.
[16]CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms[J]. Software Practice & Experience, 2010, 41(1): 23.
[17]PRIYA V, BABU C N K. Moving Average Fuzzy Resource Scheduling for Virtualized Cloud Data Services[J]. Computer Standards & Interfaces, 2016, 50: 251.
[18]罗智勇,朱梓豪,尤波,等.基于串归约的时间约束下工作流精确率优化算法[J].哈尔滨理工大学学报,2018,23(5):68.
[19]LU D, MA J, SUN C, et al. Creditbased Scheme for Securityaware and Fairnessaware Resource Allocation in Cloud Computing[J]. Science ChinaInformation Sciences, 2017, 60(5): 052103.
[20]赵辉,吕青,丁树业.模糊综合评判在优化电机冷却系统中的应用[J].哈尔滨理工大学学报,2016,21(6):106.
[21]ZHANG Y, SUN J. Novel Efficient Particle Swarm Optimization Algorithms for Solving QoSdemanded Bagoftasks Scheduling Problems with Profit Maximization on Hybrid Clouds[J]. Concurrency and ComputationPractice & Experience, 2017, 29(21): 4249.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(01):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(01):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(01):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(01):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(01):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(01):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(01):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(01):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(01):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(01):18.
[11]裴树军,孔德凯,苗辉. DMS算法在Map/Reduce任务调度中的应用[J].哈尔滨理工大学学报,2019,(01):71.[doi:1015938/jjhust201901012]
 PEI Shu jun,KONG De kai,MIAO Hui. DMS Algorithm in the Application of the Map/Reduce Tasks Schedule[J].哈尔滨理工大学学报,2019,(01):71.[doi:1015938/jjhust201901012]

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金(61772160);黑龙江省教育厅科学技术研究项目(12541142)
更新日期/Last Update: 2019-03-26