[1]刘晓晶,陈龙,陈晓晓,等.四通管内高压成形的工艺优化和分析[J].哈尔滨理工大学学报,2018,(05):143-146.[doi:10.15938/j.jhust.2018.05.025]
 LIU Xiao jing,CHEN Long,CHEN Xiao xiao,et al. Optimization and Analysis of Hydroforming Process for Fourway Pipe[J].哈尔滨理工大学学报,2018,(05):143-146.[doi:10.15938/j.jhust.2018.05.025]
点击复制

四通管内高压成形的工艺优化和分析()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年05期
页码:
143-146
栏目:
材料科学与工程
出版日期:
2018-10-25

文章信息/Info

Title:
 Optimization and Analysis of Hydroforming Process for Fourway Pipe
作者:
刘晓晶陈龙陈晓晓王雅为冯章超
(哈尔滨理工大学 材料科学与工程学院,黑龙江 哈尔滨 150040)
Author(s):
 LIU XiaojingCHEN LongCHEN XiaoxiaoWANG YaweiFENG Zhangchao
 (School of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China)
关键词:
 关键词:四通管响应面法数值模拟回归分析
Keywords:
 Keywords:Fourway pipe response surface methodnumerical simulation regression analysis
分类号:
TG394
DOI:
10.15938/j.jhust.2018.05.025
文献标志码:
A
摘要:
 摘要:基于Dynaform软件,建立四通管内高压成形的有限元模型。选取初始进给量、初始内压力、中间内压力作为设计变量,成形后管件的最小壁厚和最大壁厚为设计目标,基于BoxBehnken Design实验设计和响应曲面法,分别建立以管件的最小壁厚和最大壁厚为目标的响应面模型。通过数值模拟的方法研究了各个参数对成形管件的影响,并通过方差和回归分析,确定了模型的最优参数。将模型预测的因素值进行有限元数值模拟后得到的结果与模型得出的结果值的误差率小于1%,验证了模型的可靠性。结果表明,通过响应面法和数值模拟可以快速获得质量较好的四通管类零件成形工艺参数。
Abstract:
 Abstract:Based on Dynaform, a finite element model of hydroforming for fourway pipe was built Through the initial feed rate, initial internal pressure, and the intermediate pressure were selected as the design variables, taking the minimum and maximum wall thickness of the postforming for tube as design aimBased on BoxBehnken Design and response surface method, the response surface model was established for the goals of minimum and maximum wall thickness of tube ,the effects of various parameters on the forming tube by numerical simulation was studied, and the optimal parameters of the model was determined through variance and regression analysis The result of model’s predicted factor through finite element simulation, compared with the result of the model, the error rate was less than 1 percent, therefore the reliability of the model was verified The results showed that highquality forming process parameters fourtube part could be quickly got through response surface method and numerical simulation

参考文献/References:

 [1]许桦 内高压成形管件在汽车上的应用[J]. 上海汽车, 2012(7): 52-55
[2]余年生, 余蔚荔 基于有限元仿真的四通管内高压成形工艺分析[J]. 机床与液压, 2009,37(2):161-163
[3]VOLLERTSEN F Hydroforming of Aluminum Alloys Using Heated oil[C]//Leuven9th International Conference on Sheet Metal,2001:157-164
[4]DOHMAN F, HARTL C Hydroforming Method to Manufacture Lightweight parts[J]. Journal of Materials Processing Technology, 1996, 60(20): 669-676
[5]张凌云, 张忠洁 基于Dynaform的T形三通管热态内高压成形加载路径优化[J]. 热加工工艺, 2014,43(1): 109-111
[6]陈建军 内高压成形工艺及其在汽车轻量化中的应用[J]. 锻压装备与制造技术, 2010(1): 12-17
[7]李健, 黄红生, 袁杰, 等 铝合金管件液压胀形的实验及仿真分析[J]. 广 西科技大学学报, 2014, 25(3): 2-5
[8]吴亚朋 某SUV后副车架内高压成形数值模拟研究[D]. 秦皇岛: 燕山大学, 2013: 3-5
[9]MUAMMERKOE,TAYLANALTANAnoverall Review of the Tube Hydroforming (THF) Technology[J]. Journal of Materials Processing Technology, 2001, (108): 384-393
[10]KOC M, ALTAN T An Overall Review of the Tube Hydroforming Technology[J]. Journal of Materials Processing Technology, 2001, 108(3): 400-405
[11]苑世剑, 韩聪, 王小松, 等 大型内高压成形装备及批量生产模具[J]. 汽 车工艺与材料, 2014, (9): 49-52
[12]YUAN SJ, LIU G, HUANG XR, WANG XS Hydroforming of Typical Hollow Components[J]. Journal of Materials Processing Technology, 2004, 151: 203-207
[13]王勇, 韩聪, 苑世剑 补料量对管材充液剪切弯曲成形精度的影响[J]. 材料科学与工艺, 2013, 21(2): 67-70
[14]YUAN SJ, LIU G, WANG XS Use of Wrinkles in Tube Hydroforming Idea andExamples[J]. International Conference on Hydroforming Sttugart, 2003:79-90
[15]张琦, 王仲仁 改善摩擦条件以实现省力成形[J]. 机械工程学报 2013, 49(18): 106-108
[16]周林, 薛克敏, 李萍 基于FEM的汽车前梁内高压成形工艺研究[J]. 中国机械工程, 2006(17): 38-40
[17]唐勇, 李纪龙, 李萍, 等 汽车桥壳机械式胀形数值模拟及实验[J]. 塑性工程学报, 2013, 20(6): 32-35
[18]YUAN S J, LIU G Hydroforming of Typical Hollow Components[J]. Journal of Materials Processing Technology, 2004, 151: 203-207
[19]YUAN SJ Modern Hydroforming Technology[M]. Beijing: NationalDefence Industry Press, 2009: 14-18
[20]苑世剑 现代液压成形技术[M]. 北京: 国防工业出版社, 2009: 14-18
[21]OLABI A G, ALASWAD A Experimental andFinite Element Investigation of Formability and Failures in Bilayered Tube Hydroforming[J]. Advances in Engineering Software, 2011, 42(56): 815-820

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(05):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(05):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(05):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(05):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(05):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(05):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(05):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(05):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(05):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(05):18.

备注/Memo

备注/Memo:
 基金项目:〖HTSS〗黑龙江省自然科学基金(E201102);哈尔滨市人才基金(2017RAXXJ008)
更新日期/Last Update: 2018-11-15