[1]姚慧丽,孙海彤. 一类随机积分-微分方程的均方渐近概自守温和解[J].哈尔滨理工大学学报,2018,(05):119-123.[doi:10.15938/j.jhust.2018.05.020]
 YAO Hui li,SUN Hai tong. SquareMean Asymptotically AlmostAutomorphic Mild Solutionsto a Class of Stochastic IntegroDifferential Equations[J].哈尔滨理工大学学报,2018,(05):119-123.[doi:10.15938/j.jhust.2018.05.020]
点击复制

 一类随机积分-微分方程的均方渐近概自守温和解()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年05期
页码:
119-123
栏目:
数理科学
出版日期:
2018-10-25

文章信息/Info

Title:
 SquareMean Asymptotically AlmostAutomorphic Mild Solutions
to a Class of Stochastic IntegroDifferential Equations
作者:
 姚慧丽孙海彤
(哈尔滨理工大学 应用科学学院,黑龙江 哈尔滨 150080)
Author(s):
 YAO HuiliSUN Haitong
 (School of Applied Sciences, Harbin University of Science and Technology, Harbin 150080, China)
关键词:
 关键词:均方渐近概自守温和解C0-半群Banach不动点定理随机积分-微分方程
Keywords:
 Keywords:squaremean asymptotically almost automorphic mild solutions C0semigroup Banach fixed point theorem stochastic integrodifferential equations
分类号:
O175
DOI:
10.15938/j.jhust.2018.05.020
文献标志码:
A
摘要:
 摘要:介绍了均方渐近概自守函数和均方渐近概自守随机过程的概念及性质,在一些假设下,利用C0半群和Banach不动点定理以及CauchySchwarz不等式,讨论了一类抽象半线性发展型随机积分-微分方程在实可分Hilbert空间中的均方渐近概自守温和解的存在性和唯一性。
Abstract:
 Abstract:Some concepts and properties of squaremean asymptotically automorphic function and stochastic process are introduced. Underlying some assumptions, C0semigroup and the Banach fixed point theorem and CauchySchwarz inequality are used to discuss the existence and uniqueness of Squaremean asymptotically almost automorphic mild solutions ,in a real separable Hilbert space, for a class of abstract semilinear stochastic integrodifferential evolution equations.


参考文献/References:

[1]BOHR H. Zur Theorie Der Fastperiodischen Funktionne I[J].Acta Mathematica, 1925, 45: 19-127.
[2]BOHR H. Zur Theorie Der Fastperiodischen Funktionne II[J].Acta Mathematica, 1925, 46(1): 101-214.
[3]BOHR H. Zur Theorie Der Fastperiodischen Funktionne III[J].Acta Mathematica, 1926, 47(3): 237-281.
[4]〖JP2〗FRCHET M. Les Fonctions Asymptotiquement Presquepeiodiques Continues [J]. C. R. Acad. Sci. Paris, 1941, 213: 520-522.
[5]EBERLEIN W F. AbstractErgodic Theorems and Weakly Alost Periodic Functions[J]. Trans. Amer. Math. Soc, 1949, 67: 217-240. 
[6]ZHANG CHUANYI. Pseudo Almost Periodic Functions andTheir Applications[D]. University of Western Ontario, 1992:10-50. 
[7]BEZANDRY P, DIAGANA T. Squaremean Almost Periodic Solutions to Some Classes of Nonautonomous Stochastic Evolution Equations with Finite Delay[J]. Journal of Applied Functional Analysis, 2012, 7(4):345-366.
[8]BEZANDRY P H, DIAGANA T. Existence of S 2almost Periodic Solutions to a Class of Nonautonomous Stochastic Evolution Equations[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2008, 35(35):1-19.
[9]BEZANDRY P H, DIAGANA T. An Introduction to Stochastic Differential Equations[M]. Springer New York, 2011:61-115.
[10]BEZANDRY P H, DIAGANA T. Mean Almost Periodic Solutions to Some Stochastic Difference Equations[J]. 2011:213-223.
[11]BEZANDRY P H, DIAGANA T. Pth Mean Almost Periodic Random Functions[M]. Springer New York, 2011:62-88.
[12]BEZANDRY P H. On the Existence of Almost Automorphic Solutions of Nonlinear Stochastic Volterra Difference Equations[J]. African Diaspora Journal of Mathematics, 2013, 15(1).
[13]BEZANDRY P H, DIAGANA T. Existence Results for Some Stochastic Differential Equations[M]. Springer New York, 2011:80-99.
[14]FU M. AlmostAutomorphic Solutions for Nonautonomous Stochastic Differential Equations[J]. Proceedings of the American Mathematical Society, 2010, 393(1):231-238.
[15]FU MM. SquareMean Almost Automorphic Solutions for a Class of Nonautonomous Stochastic Differential Equations[J]. Journal of Jilin University, 2011, 49(4):669-673.
[16]CHANG Y K, ZHAO Z H, N’GURKATA G M. Squaremean Almost Automorphic Mild Solutions to Nonautonomous Stochastic Differential Equations in Hilbert Spaces[J]. Advances in Difference Equations, 2011, 61(1):384-391.
[17]姚慧丽, 王健伟. 一类随机积分-微分方程的均方渐近概周期解[J]. 哈尔滨理工大学学报, 2014, 19(6):118-122.
[18]Xiliang, Yuliang, Baifeng. Squaremean Almost Automorphic Solutions to Some Stochastic Evolution Equations I: Autonomous Case[J]. Acta Mathematica Applicatae Sinica, English Series, 2015, 31(3):577-590.
[19]姚慧丽, 刘婷, 张士晶. 一类随机微分方程的均方渐近概自守温和解[J]. 哈尔滨理工大学学报, 2016, 21(3):114-120.
[20]ICHIKAWA A. Stability of Semilinear Stochastic Evolution Equations [J]. Journal of Mathematical Analysis & Applications, 1982, 90(1):12-44.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(05):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(05):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(05):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(05):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(05):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(05):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(05):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(05):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(05):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(05):18.

备注/Memo

备注/Memo:
 基金项目:黑龙江省教育厅2011〖KG-0.5mm〗年度科学技术研究项目(12511110);黑龙江省自然科学基金(2018006).
更新日期/Last Update: 2018-11-15