[1]薛萍,姚娟,邹学洲,等. 基于法矢修正的点云数据去噪平滑算法[J].哈尔滨理工大学学报,2018,(05):86-91.[doi:10.15938/j.jhust.2018.05.015]
 XUE Ping,YAO Juan,ZOU Xue zhou,et al. Smoothing Algorithm of Point Cloud Based on Normal Vector Correction[J].哈尔滨理工大学学报,2018,(05):86-91.[doi:10.15938/j.jhust.2018.05.015]
点击复制

 基于法矢修正的点云数据去噪平滑算法()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年05期
页码:
86-91
栏目:
电气与电子工程
出版日期:
2018-10-25

文章信息/Info

Title:
 Smoothing Algorithm of Point Cloud Based on Normal Vector Correction
作者:
 薛萍姚娟邹学洲王宏民
(哈尔滨理工大学 自动化学院,黑龙江 哈尔滨 150080)
Author(s):
 XUE PingYAO JuanZOU XuezhouWANG Hongmin
 (School of Automation,Harbin University of Science and Technology,Harbin 150080,China)
关键词:
 关键词:点云数据去噪平滑加权协方差矩阵三边滤波法矢修正
Keywords:
 Keywords:point cloud data denoising smoothing weighted covariance matrix trilateration filtering normal vector correction
分类号:
TP3919
DOI:
10.15938/j.jhust.2018.05.015
文献标志码:
A
摘要:
 摘要:逆向工程数据采集点云数据的离群点和噪声点的存在,直接影响数据的多视图拼合,特征提取,数据精简以及曲面重构的质量。在对双边滤波和三边滤波算法的研究的基础上,提出了一种基于法矢修正的点云数据去噪平滑的算法。对于噪声点通过加权协方差矩阵估算点云邻域内几何特征,将具有相似几何特征的点限制在法向量相似的区域,在相似邻域内的采样点法矢和位置分别进行保特征的三边滤波。改进后的算法能够有效地滤出点云数据中的离群点和噪声点,同时保证了点云数据的尖锐及边缘特征,取得良好的去噪效果。
Abstract:
 Abstract:The presence of outliers and noise points in the cloud data of the reverse engineering data collection directly affects the multview’s combination of the data, feature extraction, data reduction and the quality of surface reconstruction Based on the research of bilateral filtering and trilateration filtering algorithm, this paper presents an algorithm of denoising and smoothing of point cloud data based on normal vector correction Firstly, the local neighborhood of the point cloud data is constructed, and the noise points of the scattered data collected by the data acquisition system are classified and processed For outliers in the point cloud data, mathematical statistics analysis is used to filter out the points whose KNN is lower than the threshold The points with similar geometric characteristics are restricted to the regions where the normal vectors are similar, and the normal vectors and positions of the samples in the similar neighborhoods are triangulated  The improved algorithm can effectively filter the outliers and noise points in the point cloud data, and ensure the sharp and edge features of the point cloud data and obtain good denoising effect



参考文献/References:

 [1]FLEISHMAN S, COHENOr D, SILVA CT Robust Moving Leastsquares Fitting with Sharp Features [C]// ACM Transactions on Graphics, 2005, 24(3):544-552
[2]SUN W, BRADLEY C, ZHANG Y F, etal Cloud data modeling employing a unified nonredundant triangular mesh [J]. Computer Aided Design, 2001, 33(2): 183-193
[3]尹婷三维激光扫描数据处理技术的研究[D].武汉:武汉理工大学,2010
[4]李天兰三维点云数据的处理与应用[D].昆明:昆明理工大学,2011
[5]张金花,吴思,胡本刚,等基于地面三维激光扫描仪点云数据的去噪算法研究[J].测绘与空间地理信息,2016(3):76-78
[6]MEDELLIN H, CORNEY J, DAVIES J B Algorithms for the Physical and Assembly of Octree Models [J]. ComputerAided Design, 2006, 38(1):69-85
[7]SUN Xiaoxia, SUN Dianzhu, LI Yanrui, et al Algorithm of Point Data Direct Reduction in Reverse Engineering[J]. Machinery Design & Manufacture, 2006(8):37-38
[8]HUANG G Z, LU Z P Methods of Point Cloud Data Reduction for Reverse Engineering[J]. Machine Design and Research, 2005, 21(3): 59-61
[9]王丽辉三维点云数据处理的技术研究[D].北京:北京交通大学,2011
[10]何东健,邵小宁,王丹,等Kinect获取植物三维点云数据的去噪方法[J].农业机械学报,2016(1):331-336
[11]张育锋三维数据点云的去噪及其检测[D].南京:南京信息工程大学,2014
[12]PIEGL LA, TILLER W Algorithm for Finding All K Nearest Neighbors [J].Computer Aided Design, 2002, 34(2): 167-172
[13]XU Dong, ZHANG Quanfang, LIU Xianguo, et al Geometry Compression for Genreal Polygon Meshes[J].Journal of Computer Aided Design & Computer Graphics, 2002, 14(9): 815-819
[14]张帆点云数据几何处理方法研究[D].西安:西北大学,2013
[15]罗格三维模型去噪算法的研究及其在三维曲面重建上的应用[D].哈尔滨:哈尔滨工业大学,2015
[16]梁士超三维点云预处理技术研究[D].绵阳:西南科技大学,2015
[17]吴琼三维点云模型数据的滤波算法与配准算法研究[D].秦皇岛:燕山大学,2014
[18]姜晓通离散点云数据重建关键技术的研究[D].南京:南京航空航天大学,2013

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(05):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(05):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(05):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(05):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(05):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(05):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(05):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(05):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(05):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(05):18.

备注/Memo

备注/Memo:
 基金项目:黑龙江省自然科学基金(F201310);哈尔滨市科技创新人才项目(2016RAQXJ037).
更新日期/Last Update: 2018-11-14