[1]陈宇,李洪宇. Huang族校正电容层析成像图像重建算法[J].哈尔滨理工大学学报,2018,(05):80-85.[doi:10.15938/j.jhust.2018.05.014]
 CHEN Yu,LI Hong yu. A Huang Clan Correction Image Reconstruction AlgorithmFor Electrical CapacitanceTomography System[J].哈尔滨理工大学学报,2018,(05):80-85.[doi:10.15938/j.jhust.2018.05.014]
点击复制

 Huang族校正电容层析成像图像重建算法
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年05期
页码:
80-85
栏目:
计算机与控制工程
出版日期:
2018-10-25

文章信息/Info

Title:
 A Huang Clan Correction Image Reconstruction Algorithm
For Electrical CapacitanceTomography System
作者:
 陈宇李洪宇
 (东北林业大学 信息与计算机工程学院, 黑龙江 哈尔滨 150040)
Author(s):
 CHEN YuLI Hongyu
 (College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China)
关键词:
 关键词:电容层析成像 Huang族校正图像重建
Keywords:
 Keywords:electrical capacitance tomography Huang clan correction image reconstruction
分类号:
TN 91173
DOI:
10.15938/j.jhust.2018.05.014
文献标志码:
A
摘要:
 摘要:针对电容层析成像(ECT)技术中的“软场”效应和病态问题,提出了一种Huang族校正的电容层析成像图像重建算法。首先依据ECT系统的基本原理,推导出ECT问题中Huang族校正的校正公式,其次给出校正后用于ECT反问题求解仿真实验的迭代公式。最后,采用数字仿真模拟实验方式,验证提出方法的有效性。实验结果表明,Huang族校正方法对于极低位、低位、核心流而言,图像误差分别降到2439%、2581%和4091%,均低于LBP、Landweber、SD和CG方法;对于极低位、低位及柱状流而言,迭代次数分别为12、12、27次,比Landweber算法和SD法都要低,综合分析,可知Huang族校正方法实验效果良好。

Abstract:
 Abstract:To solve the ‘softfield’ nature and the illposed problem in electrical capacitance tomography technology, a Huang clan correction image reconstruction algorithm for electrical capacitance tomography is presented Firstly,according to the basic principles of the Electrical Capacitance Tomography system, the formula of Huang clan correction in the problem of capacitance tomography is derived Secondly, the iterative formula for simulation experiment is given after the correctionFinally, the validity of the proposed method is verified by digital simulationThe simulation experiment results show that the error of the image for extremely low layer flow,low layer flow and core flow dropped to 2439%,2581% and 4091% respectively Results were lower than Linear Back Projection method,Landweber method,Steepest Descent method and Conjugate Gradient method In addition,the number of iterations were maintained at 12,12 and 27times,also less than the Landweber method and the Steepest Descent method The results of the analysis show that the effect of the Huang Clan Correction Image Reconstruction Algorithm are good



参考文献/References:

 [1]吴新杰,何在刚,李惠强,等利用多准则Hopfield网络对ECT进行图像重建[J]电机与控制学报,2016,20(8):98-104
[2]陈德运,高明,李伟,等新型ECT数据采集系统设计与实现[J]电机与控制学报,2013,17(5):87-92
[3]田海军,周云龙电容层析成像技术研究进展[J]化工自动化及仪表,2012,39(11):1387-1392
[4]ISAKSEN OA Review of Reconstruction Techniques for Capacitance Tomography[J]Measurement Science and Technology,1996,7(3):325-337
[5]FANG W,CUMBERBATCH EMatrix Properties of Data from Electrical Capacitance Tomography[J]Eng Math, 2005,51(2):127-146
[6]SOLEIMANI M,LIONHEART W R B Nonlinear Image Reconstruction for Electrical Capacitance Tomography Using Experimental Data[J] Measurement Science and Technology,2005,16(10):1987-1996
[7]ORTIZALEMAN C,MARTIN R,GAMIO J C,et al Reconstruction of Permittivity Images from Capacitance Tomography Data by Using Very Fast Simulated Annealing[J]Measurement Science and Technology,2004,15(7):1382-1390
[8]陈德运,郑贵滨,于晓洋,等基于遗传算法电容层析成像图像重建算法的研究[J]电机与控制学报,2003,7(3):207-211
[9]于金平,陈德运,张云龙,等一种电容层析成像局部方差的图像融合方法[J]哈尔滨理工大学学报,2015,20(4):116-121
[10]XI Shaolin,ZHAO FengzhiComputation Methods for Optimization[M]ShAnghai,Shanghai Scientifie & Technical Publishers,1983:113-117
[11]周云龙,衣得武,高云鹏基于INGA的电容层析成像图像重建算法的研究[J]制造业自动化,2012,34(6):81-86
[12]YANG W Q,PENG L HImage reconstruction algorithms for electrical capacitance tomography[J]Measurement Science and Technology,2003,14(1): R1~R3
[13]于金平,陈德运,王莉莉一种基于禁忌搜索的电容层析成像图像重建算法[J]哈尔滨理工大学学报,2016,21(1):51-56
[14]林甲楠,陈德运,姚玉梅等一种分解型QuasiNewton电容层析成像图像重建算法[J]哈尔滨理工大学学报,2014,19(6):44-47
[15]王莉莉,陈德运,于晓洋等电容层析成像系统传感器优化设计[J]仪器仪表学报,2015,36(3):515-522
[16]孙犇渊,王化祥,王丕涛基于内部阵列电极的电容层析成像系统[J]传感技术学报,2013,26(6):820-824
[17]郭志恒,律德才,邵富群基于差分灵敏度模型的电容层析成像图像重建方法[J]中国电机工程学报,2012,32(23):75-82
[18]曹海燕,王化祥电容层析成像系统传感器仿真研究[J]计算机工程与应用,2012,48(15):207-211
[19]许闻楷,陈德运,高明,等电容层析成像三维传感器结构设计及图像重建[J]哈尔滨理工大学学报,2016,21(5):34-39
[20]吉洪驻,陈德运,高明.等电容层析成像系统三维传感器结构分析[J]哈尔滨理工大学学报,2016,21(5):107-112
[21]陈宇,陈德运基于改进RungeKutta型landweber的电容层析成像图像重建算法[J]电机与控制学报,2014,18(7):107-112
[22]陈宇,孙帆,张健基于自适应权重粒子群的电容层析成像边界灰度补偿算法[J]哈尔滨理工大学学报,2010,15(3):44-49
[23]袁亚湘,孙文瑜最优化理论与方法[M]北京:科学出版社,1997:219-259
[24]张云龙,陈德运,王莉莉一种基于期望最大化条件的电容层析成像图像重建算法[J]哈尔滨理工大学学报,2016,21(2):13-19

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(05):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(05):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(05):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(05):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(05):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(05):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(05):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(05):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(05):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(05):18.

备注/Memo

备注/Memo:
 基金项目:中央高校基本科研业务费专项资金(2572015DY07);黑龙江省自然科学基金(F201347);哈尔滨市科技创新人才专项资金(2013RFQXJ100);国家自然科学基金(61300098)
更新日期/Last Update: 2018-11-14