[1]崔云安,王晶辰.平均非扩张映射的不动点性质[J].哈尔滨理工大学学报,2018,(04):122-126.[doi:10.15938/j.jhust.2018.04.023]
 CUI Yun an,WANG Jing chen. The Fixed Point Property of Mean Nonexpansive Mapping[J].哈尔滨理工大学学报,2018,(04):122-126.[doi:10.15938/j.jhust.2018.04.023]
点击复制

平均非扩张映射的不动点性质
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年04期
页码:
122-126
栏目:
数理科学
出版日期:
2018-08-25

文章信息/Info

Title:
 The Fixed Point Property of Mean Nonexpansive Mapping
作者:
崔云安王晶辰
哈尔滨理工大学 应用数学系,黑龙江 哈尔滨 150080
Author(s):
CUI YunanWANG Jingchen
Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China
关键词:
关键词:平均非扩张映射不动点渐近正规结构GarciaFalset常数
Keywords:
Keywords:mean nonexpansive mapping fixed point asymptotic norml structure GarciaFalset constant
分类号:
O1772
DOI:
10.15938/j.jhust.2018.04.023
文献标志码:
A
摘要:
摘要:主要探讨了有关平均非扩张映射的不动点性质,先验证了具有Opial性质的弱紧凸集在平均非扩张映射下具有不动点性质;接着探讨了平均非扩张映射下,具有渐近正规结构的自反Banach空间X中的弱紧凸集中存在不动点;最后证明了GarciaFalset常数满足特定的不等式时,平均非扩张映射T具有不动点性质。
Abstract:
Abstract:In this paper, it mainly discussed the fixed point properties of the mean nonexpansive mapping. First of all, it proved the weakly compact convex subset with Opial properties for mean nonexpansive mapping that has weak fixed point property. Secondly, it discussed the weakly compact convex subset of reflexive Banach space X which has asymptotic normal structure that has a fixed point for mean nonexpansive mapping Finally, it proved that when the GarciaFalset constant satisfied specific inequality, the mean nonexpansive mapping T has a fixed point

参考文献/References:

[1]张石生 不动点理论及应用[M]. 重庆:重庆出版社, 1984: 100-200
[2]陈汝栋 不动点理论及应用[M]. 北京:国防工业出版社, 2012: 58-70
[3]杨姗姗 Banach空间中平均非扩张映射的不动点问题[J]. 哈尔滨工业大学学报, 2003, 35(6): 101-103
[4]陈开周, 党床寅, 杨再福 不动点理论和计算[M]. 西安:西安电子科技大学出版社, 1990: 100-210
[5]JUNG JS Iterative Approaches to Common Fixed Points of Nonexpansive Mappings in Banach Spaces[J].Journal of Mathematical Analysis & Applications, 2005, 302(2): 509-520
[6]KIRK WA A Fixed Point Theorem for Mappings Which do Not Increase Distance[J]. American Mathematical Monthly, 1965, 72(9): 1004-1006
[7]BROWDER FE Nonexpansive Nonlineare Operators in a Banach Space[J]. Proceedings of the American Mathematical Society, 1965, 54(4): 1041-1044
LL〗[8]SIMS B Orthogonality and Fixed Points of Nonexpansive Maps[J]. Proc CentreMathAnalNatUnivAustral, 1988, 20(7): 176-186
[9]BAE JS Fixed Point Theorems of Generalized Nonexpansive Maps[J]. Journal of the Korean Mathematical Society, 1984, 21(2): 233-248
[10]KG*2〗KANNAN R, Fixed Point Theorems in Reflexive Banach Spaces[J]. Proceedings of the American Mathematical Society, 1973, 38(1): 111-118
[11]KG*2〗吴春雪 关于平均非扩张映射的公共不动点问题[J]. 烟台大学学报, 2003, 17(3): 161-163 
[12]KG*2〗SCHAUDER J Der Fixpunktsatz in Funktionalraumen[J]. Studia Mathematica, 1930, 35(2): 17-22
[13]KG*2〗BANACH S Sur Les Opérations Dans Les Ensembles Abstraits et Leur Application Aux quations Intégrales[J]. Fundamenta Mathematicae, 1922, 3(1): 51-57
[14]KG*2〗KIRK WA, SIMS B Handbook of Metric Fixed Point Theory[M]. Springer Netherlands, 2001, 101(1): 11-26
[15]KG*2〗OPIAL Z Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings[J]. Bull AmerMath Soc, 1967, 50(73): 591-597
[16]KG*2〗BELLUCE LP, KIRK WA, STEINER EF Normal Structure in Banach Space Pacific Journal of Mathematics, 1968, 26(3): 433-440
[17]KG*2〗BENAVIDES TDN Weak Uniform Normal Structure in Direction Sum Spaces[J]. Studia Mathematica, 1992, 103(3): 293-299
[18]KG*2〗GARICIAFALSET J Stability and Fixed Points for Nonexpansive Mappings[J]. Huston Math, 1994, 233(20): 495-505
[19]KG*2〗DOMNGUEZ T Benavides A Geometrical Coefficient Implying the Fixed Point Property and Stability Results[J]. Houston Journal of Mathematics, 1996, 22(4): 835–849
[20]KG*2〗WANG JM, CHEN LL, CUI YA The Fixed Point Property of Mean Nonexpansive Mapping[J]. Journal of Natural Science of Heilongjiang University, 2006, 23(3): 298-301

相似文献/References:

[1]姚慧丽,孙海彤,卜宪江.一类带可变延迟细胞神经网络的渐近概周期解[J].哈尔滨理工大学学报,2017,(05):130.[doi:10. 15938/j. jhust. 2017. 05. 024]
 YAO Hui-li,SUN Hai-tong,BU Xian-jiang.Asymptotically Almost Periodic Solutions for a Class of Cellular Neural Networks with Varying Delays[J].哈尔滨理工大学学报,2017,(04):130.[doi:10. 15938/j. jhust. 2017. 05. 024]

备注/Memo

备注/Memo:
基金项目:黑龙江省自然科学基金(A2015018)
更新日期/Last Update: 2018-10-25