[1]刘书池,杨维.矿井环境下无人机视觉PSOFastSLAM算法的实现[J].哈尔滨理工大学学报,2018,(04):75-81.[doi:10.15938/j.jhust.2018.04.014]
 LIU Shu chi,YANG Wei.Implementation ofVision PSOFastSLAM Algorithm for Unmanned Aerial Vehicles in Mine Environment[J].哈尔滨理工大学学报,2018,(04):75-81.[doi:10.15938/j.jhust.2018.04.014]
点击复制

矿井环境下无人机视觉PSOFastSLAM算法的实现()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年04期
页码:
75-81
栏目:
计算机与控制工程
出版日期:
2018-08-25

文章信息/Info

Title:
Implementation ofVision PSOFastSLAM Algorithm for Unmanned Aerial Vehicles in Mine Environment
作者:
刘书池杨维
北京交通大学 电子信息工程学院,北京 100044
Author(s):
 LIU Shu chiYANG Wei
 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
关键词:
关键词:同步定位与地图构建无人机FastSLAM算法粒子群优化
Keywords:
Keywords:simultaneous localization and map building unmanned aerial vehicle fastSLAM algorithm particle swarm optimization
分类号:
TD679
DOI:
10.15938/j.jhust.2018.04.014
文献标志码:
A
摘要:
摘要:为了实现无人机在无GPS的矿井环境下进行自主飞行,达到无人机的精准定位,提出了基于RaoBlackwellized粒子滤波器的快速同步定位与地图创建(fast simultaneous location and mapping, FastSLAM)算法。首先设计了一种适用于矿井环境下的人工路标,建立起了无人机的SLAM算法数学模型,接着提出一种改进算法—PSOFastSLAM算法提高准确性,对无人机的位姿和路标位置进行估计,实现无人机的精准定位和地图绘制。最后对进行仿真实验,仿真结果证明PSOFastSLAM算法有效改善了FastSLAM算法粒子退化的问题,提高了井下无人机定位精度。
Abstract:
Abstract:In order to realize the autonomous flight of Unmanned Aerial Vehicle (UAV) in the mine environment without GPS and also precise positioning it, an algorithm called Fast Simultaneous Location and Mapping (FastSLAM) which is based on RaoBlackwellized particle filter is proposed Firstly, an artificial road sign suitable for underground mine was designed and the mathematical model of Simultaneous Location and Mapping (SLAM) algorithm for UAV was established Then an improved algorithm called PSOFastSLAM was proposed to improve the accuracy, to estimate the pose of UAV and the position of guideposts and to achieve the accurate positioning and map building for UAV Finally, the simulation experiment is simulated, simulation results show that PSOFastSLAM algorithm can improve the particle degeneration problem in FastSLAM algorithm effectively and improve the positioning accuracy of UAV


参考文献/References:

[1]LEE Y H, JUN C H, CHOI H, et al The Analysis of Effect of Observation Models and Data Associations on the Consistency of EKF SLAM[J]. Molecular Therapy the Journal of the American Society of Gene Therapy, 2009, 17(3):430-438
[2]MONTEMERLO M S Fastslam: a Factored Solution to the Simultaneous Localization and Mapping Problem with Unknown Data Association[C]// Journal of Machine Learning Research, 2004:2004
[3]张国良, 汤文俊, 敬斌,等 辅助粒子滤波算法改进的UFastSLAM算法[J]. 哈尔滨工业大学学报, 2012, 44(11):123-128
[4]周武, 赵春霞 一种基于遗传算法的FastSLAM 2.0算法[J]. 机器人, 2009, 31(1):25-32
[5]ZIKOS N, PETRIDIS V LSLAM: Reduced Dimensionality FastSLAM with Unknown Data Association[C]// Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011:4074-4079
[6]DURRANTWHYTE H,BAILEY T Simultaneous Localization and Mapping: part I[J]. IEEE Robotics & Automation Magazine, 2006:13
[7]SHI J, PAN S, WANG X Unscented FastSLAM for UAV[J]. Journal of New Industrialization,2014,4:2529-2532
[8]王超磊, 王田苗, 梁建宏,等 小型无人直升机单目视觉FastSLAM研究[J]. 高技术通讯, 2013, 23(10):1061-1067
[9]郑睿, 原魁, 李园 一种用于移动机器人室内定位与导航的二维码[J]. 高技术通讯, 2008, 18(4):369-374
[10]KG*2〗杨峰 移动机器人基于多传感器的地图构建和导航研究[D]. 合肥:合肥工业大学, 2008
[11]KG*2〗邓伟, 梁岚珍, 浦剑涛 大范围环境中EKFSLAM问题的改进算法[J]. 计算机仿真, 2014, 31(11):345-348
[12]KG*2〗KENNEDY J, EBERHART R Particle Swarm Optimization[C]// Neural Networks, 1995 Proceedings, IEEE International Conference on IEEE, 1995:1942-1948 vol4
[13]KG*2〗ZHANG F, CAO J, XU Z An Improved Particle Swarm Optimization Particle Filtering Algorithm[C]//Communications, Circuits and Systems (ICCCAS), 2013 International Conference on IEEE, 2013: 173-177
[14]KG*2〗HAYDAR Ank瘙塂han, EMRE ner Tartan, FIKRET Ar Square Root Unscented Based FastSlam Optimized by Particle Swarm Optimization Passive Congregation[C]// IEEE International Conference on Mechatronics and Automation IEEE, 2013:469-475
[15]KG*2〗马家辰, 张琦, 谢玮,等 基于粒子群优化的移动机器人SLAM方法[J]. 北京理工大学学报, 2013, 33(11):513-517
[16]KG*2〗刘利枚, 蔡自兴 基于改进的粒子群优化的FastSLAM方法[J]. 高技术通讯, 2011, 21(4):422-427
[17]KG*2〗YING L, HE B, ZHANG S, et al A Modified FastSLAM with Simple Particle Swarm Optimization and Consistent Mapping for AUVs[C]// OCEANS 2014TAIPEI IEEE, 2014:1-5
[18]KG*2〗于金霞, 汤永利, 许景民 基于多样性向导的自适应重采样粒子滤波研究[J]. 计算机科学, 2012, 39(6):231-234
[19]KG*2〗曲丽萍, 王宏建, 边信黔 基于自适应重采样的同步定位与地图构建 [J]. 探测与控制学报, 2012, 34(3):76-81
[20]KG*2〗王伟, 陈华庆, 韩卫 无人机自主导航控制的FastSLAM算法研究[J]. 计算机仿真, 2015, 32(8):68-72

备注/Memo

备注/Memo:
基金项目:国家重点研发计划资助项目(2016YFC0801806);国家自然科学基金(51474015,51274018)
更新日期/Last Update: 2018-10-25