[1]张城城,王金辉,景子昂,等. 抗氧剂和石墨烯微片对XLPE直流击穿和空间电荷的影响[J].哈尔滨理工大学学报,2018,(04):7-11.[doi:10.15938/j.jhust.2018.04.002]
 ZHANG Cheng cheng,WANG Jin hui,JING Zi ang,et al.The Effect of Antioxidant and Graphite Nanoplatelet on DC Breakdown and Space Charge of Crosslinked Polyethylene[J].哈尔滨理工大学学报,2018,(04):7-11.[doi:10.15938/j.jhust.2018.04.002]
点击复制

 抗氧剂和石墨烯微片对XLPE直流击穿和空间电荷的影响()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年04期
页码:
7-11
栏目:
电气与电子工程
出版日期:
2018-08-25

文章信息/Info

Title:
The Effect of Antioxidant and Graphite Nanoplatelet on DC  Breakdown and Space Charge of Crosslinked Polyethylene
作者:
张城城1王金辉1景子昂1闫志雨1韩宝忠12
 1.哈尔滨理工大学 工程电介质及其应用教育部重点实验室,黑龙江 哈尔滨 150080;
2.上海起帆电缆股份有限公司,上海 201514
Author(s):
ZHANG Chengcheng1WANG Jinhui1JING Ziang1YAN Zhiyu1HAN Baozhong12
1.Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China;
2.Shanghai Qifan Cable.Limited by Share Ltd., Shanghai 201514, China
关键词:
关键词:交联聚乙烯抗氧剂石墨烯微片直流击穿强度空间电荷
Keywords:
Keywords:XLPE antioxidant GNPs DC breakdown strength space charge
分类号:
TM855
DOI:
10.15938/j.jhust.2018.04.002
文献标志码:
A
摘要:
 
摘要:为研究抗氧剂、石墨烯微片(GNPs)对交联聚乙烯(XLPE)直流介电性能的影响,通过熔融共混法制备了抗氧剂/XLPE、GNPs/抗氧剂/XLPE复合介质,测试了各材料在不同温度下的直流击穿,并对具体实验现象进行分析以及实验验证。通过电声脉冲法测试了其空间电荷分布。研究结果表明,添加所选几种抗氧剂都会降低XLPE直流击穿强度,加入GNPs使复合介质的直流击穿强度进一步降低,但添加GNPs会减小复合介质电导率以及其对温度的依赖性,减小了热击穿发生的概率,使温度对复合介质直流击穿强度的影响降低;添加抗氧剂会增加XLPE内部的空间电荷,添加少量GNPs会改善抗氧剂/XLPE复合介质内部的空间电荷分布状况,添加1.5phr GNPs(每100份XLPE中加入1.5份GNPs)即可明显抑制复合介质内的空间电荷积聚。GNPs能改善XLPE复合介质内空间电荷分布的原因是减小了介质内部的陷阱深度和密度。
Abstract:
 Abstract:To study the effect of antioxidant and graphite nanoplatelets (GNPs) on the direct current (DC) dielectric properties of crosslinked polyethylene (XLPE), antioxidant/XLPE and GNPs/antioxidant/XLPE composites were prepared by melt blending method. The DC breakdown strengths of the composites at different temperatures were tested and the experimental phenomena were analyzed and verified by experiments. The space charge distributions in the composites were also tested using the pulsed electroacoustic method. The experimental results indicated that adding different kinds of antioxidants would reduce the DC breakdown strength of XLPE, and the DC breakdown strength would further reduce after GNPs were added in. But the addition of GNPs would reduce the effect of temperature on the DC breakdown strength of composites, which was because GNPs could reduce the conductivity of the composites and the temperature dependency, reducing the probability of thermal breakdown. The space charge in XLPE would increase by adding antioxidant, but the addition of a certain amount of GNPs would improve the distribution of space charge in antioxidant/XLPE composites and the accumulation of space charge in the composites was obviously suppressed when the amount of GNPs was 1.5phr (adding 1.5g GNPs to every 100g XLPE). GNPs can reduce the depth and density of the traps in the composites, thus effectively restraining the accumulation of space charge in the composites.

参考文献/References:

 

[1]袁清云. 特高压直流输电技术现状及在我国的应用前景[J]. 电网技术, 2005, 29(14): 1-3.
[2]STEVEN, B. A Rational Consideration of Space Charge[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 20(4): 22-27.
[3]孙赟, 敬强, 高江. 高压直流电力电缆的发展与应用概况[J]. 产业与科技论坛, 2011, 10(17): 109-111.
[4]马建民, 吴爱芹. 抗氧剂的特征及作用[J]. 高分子材料科学与工程, 2004, 20(5): 46-49.
[5]KOO H, PARK J K, TAKADA T. Origin of Heterocharge in Polyethylene[C]// Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, 1994:5-8.
[6]TAKEDA T, HOZUMI N, SUZUKI H, et al. Factor of Space Charge Generation in XLPE under DC Electric Field of 20kV/mm[C]// Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, 1997: 137-141
[7]SUH K S, HWANG S J, NOH J S. Effects of Constituents of XLPE on the Formation of Space Charge[J]. IEEE Transactions on Dielectrics and Electrial Insulation. 1994, 1(6): 1077-1082.
[8]陈威, 邬茂, 金炼铁. 抗氧剂及其发展趋势[J]. 化工技术与开发, 2008, 37(12): 22-25.
[9]TANAKA Y, CHEN G, ZHAO Y. Effect of Additives on Morphology and Space Charge Accumulation in Low Density Polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(1):148-154.
[10]KG*2〗尹毅, 屠德民, 龚振芬, 等. 以氯化聚乙烯改性交联聚乙烯作为直流电缆绝缘的研究[J]. 电工技术学报, 2000, 15(6): 50-55.
[11]KG*2〗屠德民. 高压直流电力电缆的发展概况[J]. 电气电子教学学报, 2001, 23(2): 5-10.
[12]KG*2〗郑煜, 吴建东, 王俏华, 等. 空间电荷与直流电导联合测试技术用于纳米MgO 抑制XLPE 中空间电荷的研究[J]. 电工技术学报, 2012, 27(5): 126-131.
[13]KG*2〗王霞, 成霞, 陈少卿, 等. 纳米ZnO/低密度聚乙烯复合材料的介电特性[J]. 中国电机工程学报, 2008, 18(29): 13-19.
[14]KG*2〗闫志雨, 韩宝忠, 赵洪,等. 炭黑/交联聚乙烯纳米复合材料的空间电荷和电导特性[J]. 高电压技术,2014, 40(9): 2661-2667.
[15]KG*2〗卓金玉. 电力电缆设计原理[M]. 北京: 机械工业出版社, 1999: 67-69.
[16]KG*2〗SALAH Khalil M, CHERFI A, TOUREILLE A, et al. Influence of BaTiO3 Additive and Electrode Material on Space Charge Formation in Polyethylene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(6): 743-746.
[17]KG*2〗党志敏, 亢婕,屠德民. EAA改性XLPE中空间电荷和电树、水树的关系[J]. 中国电机工程学报, 2001, 21(7): 5-8.
[18]KG*2〗高俊国, 张豪, 李丽丽, 等. 交联聚乙烯/蒙脱土纳米复合物空间电荷特性研究[J]. 高分子学报,2013(1):126-133.
[19]KG*2〗TAKADA T, HAYASE Y, TANAKA Y, et al. Space Charge Trapping in Electrical Potential Well Caused by Permanent and Induced Dipoles for LDPEMgO Nanocomposite[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 1(15): 152-160.

 



相似文献/References:

[1]马一力,丛祥旭,李忠华. 0~-50℃交联聚乙烯材料的电树枝生长特性[J].哈尔滨理工大学学报,2018,(03):111.[doi:10.15938/j.jhust.2018.03.019]
 MA Yi li,CONG Xiang xu,LI Zhong hua. Growth Behaviors of Electrical Tree in Crosslinked Polyethylene from 0℃ to -50℃[J].哈尔滨理工大学学报,2018,(04):111.[doi:10.15938/j.jhust.2018.03.019]

备注/Memo

备注/Memo:
国家自然科学基金重点项目(51337002);黑龙江省杰出青年科学基金(JC201409).
更新日期/Last Update: 2018-10-24