[1]柳长源,张付浩,韦琦. 基于脑电信号的癫痫疾病智能诊断与研究[J].哈尔滨理工大学学报,2018,(03):91-98.[doi:10.15938/j.jhust.2018.03.016]
 LIU Chang yuan,ZHANG Fu hao,WEI Qi. Intelligent Diagnosis and Research of Epileptic Diseases Based on EEG Signals[J].哈尔滨理工大学学报,2018,(03):91-98.[doi:10.15938/j.jhust.2018.03.016]
点击复制

 基于脑电信号的癫痫疾病智能诊断与研究
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年03期
页码:
91-98
栏目:
材料科学与工程
出版日期:
2018-06-25

文章信息/Info

Title:
 Intelligent Diagnosis and Research of Epileptic Diseases Based on EEG Signals
作者:
 柳长源张付浩韦琦
 哈尔滨理工大学 电气与电子工程学院,黑龙江 哈尔滨 150080
Author(s):
 LIU ChangyuanZHANG FuhaoWEI Qi
 School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080,China
关键词:
 关键词:癫痫脑电信号波动系数近似熵粒子群算法支持向量机
Keywords:
 Keywords:epileptic EEG signalscoefficient of fluctuation approximate entropyparticle swarm optimization support vector machine
分类号:
TP391.4;R318.04
DOI:
10.15938/j.jhust.2018.03.016
文献标志码:
A
摘要:
 摘要:针对医疗诊断中癫痫脑电信号分类准确率低、分类类别少的问题,依据粒子群算法和支持向量机理论,提出了一种基于粒子群算法优化支持向量机参数的信号分类检测技术。首先利用小波分析对脑电信号进行5层分解与重构,然后提取含有癫痫特征频率的3、4、5层重构信号的波动系数和近似熵等特征,计算不同状态不同尺度的脑电信号能量,根据不同状态不同尺度的能量分布,调整特征向量的系数。最后使用粒子群算法优化的支持向量机对脑电信号进行分类。实验结果表明,本文提出的方法可以正确识别健康、癫痫发作间期、癫痫发作期3种类型脑电信号,最终的识别率可以达到99.83%。
Abstract:
 Abstract:Aiming at the problem of low accuracy and classification of epileptic EEG in medical diagnosis,a signal classification and detection technique based on particle swarm optimization (PSO) was proposed to optimize the support vector machine (SVM) based on the theory of particle swarm optimization and support vector machine (SVM).Firstly, the EEG signals were decomposed and reconstructed by wavelet analysis.Secondly, the coefficients of fluctuation and approximate entropy of the reconstructed signals containing the functional parameters of epilepsy were extracted. Finally, The support vector machine (SVM) optimized by particle swarm optimization (PSO) is used to classify the EEG signals. The experimental results show that the this method can correctly identify three types of EEG signals in healthy, interictal epilepsy and epileptic seizures, the final recognition rate can reach 99.83%.

参考文献/References:

 

[1]张威,等.张京硕.癫痫300问[M].北京:化学工业出版社,2011:134-141.
[2]郑效来,邱天爽,赵庚申,一种基于EEG特征提取的癫痫棘波综合检测判决方法[J].中国生物医学工程学报,2005,24(6):696-699.
[3]袁琦,周卫东,等.基于 ELM和近似熵的脑电信号检测方法[J].仪器仪表学报,2012,33(3): 514 - 519.
[4]庞春颖,王小甜,等.一种基于改进经验模态分解的癫痫脑电识别新方法[J].中国生物医学学报, 2013,32(6):663-669.
[5]孟庆芳,等.基于递归量化分析与支持向量机的癫痫脑电自动检测方法[J].物理学报, 2014, 63(5):050506_1- 050506_8. 
[6]张涛,陈万忠,等.基于AdaBoost算法的癫痫脑电信号识别[J].物理学报,2015,64(12):128701_1-128701 _ 7.
[7]张涛,等. 基于频率切片小波变换和支持向量机的癫痫脑电信号自动检测[J].物理学报,2016, 65(3): 038703_1-038703_7.
[8]王杰,李牧潇,等. 改进的极限学习机在癫痫脑电分类中的应用[J].计算机仿真,2014,31 (6),343-346.
[9]LEE Y,WAHBA G,ACKERMAN S.Classification of Satellite Radiance Data by Multicategory Support Vector Machines[J].Journal of Atmospheric and Oceanic Technology,2004(21):159-169.
[10]张鹏博,王雪,等.癫痫发作瞬态带宽特征自适应检测方法[J].仪器仪表学报,2016,37(6),1390-1397.
[11]ZHOU W,LIU Y, et al.Epileptic Seizure Detection Using Lacunarity and Bayesian Linear Discriminant Analysis in Intracranial EEG [J].IEEE Transactions on Biomedical Engineering,2013,60(12) :3375-3381.
[12]宋立新,王玉静,等.基于HilbertHuang变换的心率变异信号分析[J].振动与冲击,2007,26(10),30-34,186.
[13]尹芳,郑亮,等.基于Adaboost的视频文本定位[J].哈尔滨理工大学学报.2017,22(1):103-108
[14]王鹏,李珊珊,等.便携式脑电信号实时采集系统[J].哈尔滨理工大学学报.2016,21(1):77-82.
[15]周卫东,赵建林,等.癫痫脑电信号识别算法及其应用 [D].济南:山东大学.2010,:37-38.
[16]PARVEZ M,PAUL M. Epileptic Seizure Detection by Exploiting Temporal Correlation of Electroencephalogram Signals[J]. Signal Processing, IET,2015,9 ( 6 ) :467-475.
[17]SONG Y, CROWCROFT J, ZHANG J.Automatic Epileptic Seizure Detection in EEGs Based on Optimized Sample Entropy and Extreme Learning Machine [J].Journal of Neuroscience Methods,2012,210 ( 2 ) :132-146.
[18]王广泽.改进粒子群算法在供应链库存控制中的应用[J],哈尔滨理工大学学报.2016,21(5),90-95
[19]BAJAJ V. Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition[J]. IEEE Transactions on Information Technology in Biomedicine,2012,16( 6) : 1135-1142.

 

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(03):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(03):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(03):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(03):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(03):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(03):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(03):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(03):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(03):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(03):18.

备注/Memo

备注/Memo:
 基金项目: 黑龙江省自然科学基金(F2016022).
更新日期/Last Update: 2018-10-19