[1]尹 芳,等. 一种简单的单幅灰度图像高光检测与恢复方法[J].哈尔滨理工大学学报,2018,(02):86-90.[doi:10. 15938/j. jhust. 2018. 02. 015]
 YIN Fang,CHEN Tian-tian,FU Zi-ru,et al. A Simple Highlight Detection and Recovery Methods for Single Grayscale Image[J].哈尔滨理工大学学报,2018,(02):86-90.[doi:10. 15938/j. jhust. 2018. 02. 015]
点击复制

 一种简单的单幅灰度图像高光检测与恢复方法
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年02期
页码:
86-90
栏目:
材料科学与工程
出版日期:
2018-04-25

文章信息/Info

Title:
 A Simple Highlight Detection and Recovery Methods for Single Grayscale Image
文章编号:
1007-2683( 2018) 02-0086-05
作者:
 尹 芳1 2 陈田田1 付自如1 于晓洋2
 ( 1. 哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080; 2. 哈尔滨理工大学 仪器科学与技术博士后科研流动站,黑龙江 哈尔滨 150080)
Author(s):
 YIN Fang12 CHEN Tian-tian1 FU Zi-ru1 YU Xiao-yang2
 ( 1. School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China; 2. Instrument Science and Technology Postdoctoral Research Station,Harbin University of Science and Technology,Harbin 150080,China)
关键词:
 :高光检测 反射模型 二维亮度饱和度直方图 BSCB 模型
Keywords:
 highlights detection reflection model Intensity-Saturation diagram BSCB model
分类号:
TP391
DOI:
10. 15938/j. jhust. 2018. 02. 015
文献标志码:
A
摘要:
 :高光的检测与去除一直是计算机视觉领域的一个热点问题,现有的大多数方法主要都 是针对彩色图像,但是灰度图像的应用又很广泛,对于只包含亮度信息的灰度图像的高光检测和去 除是一个难点问题,针对这一问题,提出了一种简单的单幅灰度图像高光检测方法。该方法对二维 亮度饱和度直方图方法进行改进,并利用漫反射分量和镜面反射分量的分布获取高光亮度值范围, 对可能存在的高光区域进行检测,最后,利用基于 BSCB 模型的图像修复方法去除高光。实验结果 表明本文算法细节处理的较好,能够有效地检测出灰度图像中镜面反射区域,提高了图像高光区域 的修复率。
Abstract:
 : Specular detection and removal has been a hot topic in the field of computer vision. Most of the existing methods are for color images,but grayscale images are widely used,for a single grayscale image with only intensity information,specular detection and removal becomes a difficult issue. In this paper,a simple specular detection method of single grayscale image is proposed. Intensity-Saturation ( MS) diagram method is improved and the distribution of diffuse component and specular component is used to obtain high brightness range. Possible specular area is detected with proportion. Finally,BSCB model-based the image restoration method removal highlights. Experimental results show that specular detection algorithm can better deal with the details of specular areas,find specular reflection area effectively in the single grayscale image and improve the repair rate specular areas of the image.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(02):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(02):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(02):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(02):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(02):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(02):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(02):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(02):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(02):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(02):18.

更新日期/Last Update: 2018-06-30