[1]乔佩利,孙春宇,罗智勇,等.基于动态扰动项的禁忌粒子群优化算法[J].哈尔滨理工大学学报,2012,(03):87-90.
 QIAO Pei-li,SUN Chun-yu,LUO Zhi-yong(.Tabu Particle Swarm Optimization Algorithm Based on Dynamic Disturbance Term[J].哈尔滨理工大学学报,2012,(03):87-90.
点击复制

基于动态扰动项的禁忌粒子群优化算法()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2012年03期
页码:
87-90
栏目:
计算机与控制工程
出版日期:
2012-06-25

文章信息/Info

Title:
Tabu Particle Swarm Optimization Algorithm Based on Dynamic Disturbance Term
作者:
乔佩利; 孙春宇; 罗智勇;
哈尔滨理工大学计算机科学与技术学院;
Author(s):
QIAO Pei-liSUN Chun-yuLUO Zhi-yong(
School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
关键词:
粒子群优化算法 动态扰动项 禁忌搜索算法 禁忌表
Keywords:
particle swarm optimization algorithm dynamic disturbance term tabu search algorithm tabu list
分类号:
TP301.6
文献标志码:
A
摘要:
针对粒子群优化算法后期收敛速度慢,且容易陷入局部最优解的缺点,在算法中加入动态扰动项,改变了速度的更新公式,使粒子可以跳出局部极值.后期引入禁忌搜索算法,充分利用禁忌搜索的记忆能力和爬上能力,能够快速搜索到全局最优解.通过对测试函数的仿真实验表明,采用动态扰动项的禁忌粒子群优化算法更能提高收敛速度,获得全局最优解. 更多还原
Abstract:
To solve the problem that the particle swarm optimization has slow convergence rate and easy to trap into local optimum,we brought forward a method based on dynamic disturbance term and changed the speed formula that the particle can jump out local optimum.Introducing the tabu search algorithm in later period,we make full use of search memory and good hill-climbing ability that can quickly search the global optimal solution.Simulation experiments show that the Tabu Particle Swarm Optimization Al...

相似文献/References:

[1]满春涛,王昆,张礼勇,等.基于禁忌搜索的混合粒子群优化算法[J].哈尔滨理工大学学报,2009,(04):5.
 MAN Chun-tao,WANG Kun,ZHANG Li-yong.A Hybrid Particle Swarm Optimization Algorithm Based on TS[J].哈尔滨理工大学学报,2009,(03):5.
[2]郭敏,赵巧娥,高金城,等. 大数据下风电场混合算法建模研究[J].哈尔滨理工大学学报,2019,(01):48.[doi:10.15938/j.jhust.2019.01.008]
 GUO Min,ZHAO Qiao-e,GAO Jin-cheng,et al. Application of Hybrid Algorithm with Large Data in Wind Farm Modeling[J].哈尔滨理工大学学报,2019,(03):48.[doi:10.15938/j.jhust.2019.01.008]
[3]满春涛,刘博,曹永成. 粒子群与遗传算法优化支持向量机的应用[J].哈尔滨理工大学学报,2019,(03):87.[doi:10.15938/j.jhust.2019.03.014]
 MAN Chun -tao,LIU Bo,CAO Yong -cheng. The Application Based on Support Vector Machine Optimized by Particle Swarm Optimization and Genetic Algorithm[J].哈尔滨理工大学学报,2019,(03):87.[doi:10.15938/j.jhust.2019.03.014]

备注/Memo

备注/Memo:
黑龙江省教育厅科学技术研究项目(12521108)
更新日期/Last Update: 2012-11-07