[1]张新闻,周春燕,李学生,等.优化核参数的SVM在电能质量扰动分类中的应用[J].哈尔滨理工大学学报,2011,(03):50-54.
 ZHANG Xin-wen,ZHOU Chun-yan,LI Xue-sheng.Recognition of Power Quality Disturbances Based on Support Vector Machine with Optimal Kernel-parameter[J].哈尔滨理工大学学报,2011,(03):50-54.
点击复制

优化核参数的SVM在电能质量扰动分类中的应用()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2011年03期
页码:
50-54
栏目:
电气与电子工程
出版日期:
2011-06-25

文章信息/Info

Title:
Recognition of Power Quality Disturbances Based on Support Vector Machine with Optimal Kernel-parameter
作者:
张新闻; 周春燕; 李学生;
北方民族大学电气信息工程学院;
Author(s):
ZHANG Xin-wen; ZHOU Chun-yan; LI Xue-sheng
School of Electrical Information Engineering; North University of Nationalities University; Yinchuan 750021; China
关键词:
支持向量机 电能质量扰动 小波变换 核参数
Keywords:
support vector machine power quality disturbances wavelet transform kernel-parameter
分类号:
TM711
文献标志码:
A
摘要:
针对短时电能质量变化和暂态扰动现象的不同特点,建立常见电能质量扰动的数学模型.运用小波变换对暂态电能质量扰动现象的内在特征进行提取,将扰动电压变化率绝对值、扰动能量变化量作为暂态电能质量扰动的特征向量.根据支持向量机的基本原理,给出一种推广误差上界估计判据,利用此判据进行最优核参数的自动选取,利用支持向量机进行训练和测试.结果表明,优化核参数的支持向量机分类器准确率高,实时性好.
Abstract:
According to the different features of short-term power quality variation and transient disturbance,the mathematical models of frequent power quality disturbances(PSD) were established.In this method the time characteristic of the disturbance is extracted by wavelet transform;the duration,amplitude and frequency of the disturbance and the absolute value of voltage regulation are taken as the inputs of classifiers to test classification accuracies.The fundamental of support vector machine(SVM) based on struc...

相似文献/References:

[1]孙永倩,王培东.基于支持向量机的并行CT图像分割方法[J].哈尔滨理工大学学报,2013,(03):42.
 SUN Yong-qian,WANG Pei-dong.[J].哈尔滨理工大学学报,2013,(03):42.
[2]黄英来,孙晓芳,刘镇波,等.微博转发预测算法评测系统的建立及性能比较[J].哈尔滨理工大学学报,2013,(04):52.
[3]李岩,杜永斌,宋海丰,等.ECT系统轮换对称svM图像重建改进算法[J].哈尔滨理工大学学报,2015,(03):40.
 LI Yan .DU Yong-bin .SONG Hai-fence.MAN Zhi-qian}.REN Xiang-h ua.Improved Method of Electrical Capacitance Tomography Based onSVM Algorithm of Cyclic Symmetrical Partition[J].哈尔滨理工大学学报,2015,(03):40.
[4]柳长源,张付浩,韦琦. 基于脑电信号的癫痫疾病智能诊断与研究[J].哈尔滨理工大学学报,2018,(03):91.[doi:10.15938/j.jhust.2018.03.016]
 LIU Chang yuan,ZHANG Fu hao,WEI Qi. Intelligent Diagnosis and Research of Epileptic Diseases Based on EEG Signals[J].哈尔滨理工大学学报,2018,(03):91.[doi:10.15938/j.jhust.2018.03.016]
[5]温雪岩,赵丽影,徐克生,等.改进的MDSMOTE与FCSVM在不平衡数据集分类中的应用[J].哈尔滨理工大学学报,2018,(04):87.[doi:10.15938/j.jhust.2018.04.016]
 WEN Xue yan,ZHAO Li ying,XU Ke sheng,et al. Application of Improved MDSMOTE and FCSVM in Imbalanced Data Set Classification[J].哈尔滨理工大学学报,2018,(03):87.[doi:10.15938/j.jhust.2018.04.016]
[6]尹召杰,许同乐,郑店坤. LMD支持向量机电机轴承故障诊断研究[J].哈尔滨理工大学学报,2018,(05):35.[doi:1015938/jjhust201805007]
 YIN Zhao jie,XU Tong le,ZHENG Dian kun. Fault Diagnosis Research on Bearingof Motor Based on LMD And Support Vector Machine[J].哈尔滨理工大学学报,2018,(03):35.[doi:1015938/jjhust201805007]

更新日期/Last Update: 2011-11-16