[1]满春涛,王昆,张礼勇,等.基于禁忌搜索的混合粒子群优化算法[J].哈尔滨理工大学学报,2009,(04):5-8.
 MAN Chun-tao,WANG Kun,ZHANG Li-yong.A Hybrid Particle Swarm Optimization Algorithm Based on TS[J].哈尔滨理工大学学报,2009,(04):5-8.
点击复制

基于禁忌搜索的混合粒子群优化算法()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2009年04期
页码:
5-8
栏目:
计算机与控制工程
出版日期:
2009-08-25

文章信息/Info

Title:
A Hybrid Particle Swarm Optimization Algorithm Based on TS
作者:
满春涛; 王昆; 张礼勇;
哈尔滨理工大学自动化学院; 哈尔滨理工大学测控技术与通信工程学院;
Author(s):
MAN Chun-tao1; WANG Kun1; ZHANG Li-yong2
1.School of Automation; Harbin University of Science and Technology; Harbin 150080; China; 2.School of Measure-control Technology and Communications Engineering; Harbin 150040; China
关键词:
粒子群优化算法 局部最优解 禁忌搜索 禁忌粒子群优化算法 全局最优解
Keywords:
PSO algorithm local optimal solution tabu-search TS-PSO algorithm better globe optimal solution
分类号:
TP301.6
文献标志码:
A
摘要:
针对粒子群优化算法(PSO)易于陷入局部最优解并存在早熟收敛的问题,利用禁忌搜索算法较强的"爬山"能力,搜索时能够跳出局部最优解,转向解空间的其他区域的特点,提出了一种新的基于禁忌搜索(TS)的混合粒子群优化算法(TS-PSO),并选用两个函数进行测试.结果表明,TS-PSO比其他改进粒子群算法更能提高收敛速度,获得全局最优解.
Abstract:
PSO algorithm will get struck at local optimal solution easily and exist premature convergence.TS algorithm has good hill-climbing ability.It can escape from the local optimal solution and turn to other solution space.A hybrid PSO algorithm based on TS is proposed.The experimental results of two test functions have shown that the TS-PSO has faster convergence velocity and better globe optimal solution.

相似文献/References:

[1]乔佩利,孙春宇,罗智勇,等.基于动态扰动项的禁忌粒子群优化算法[J].哈尔滨理工大学学报,2012,(03):87.
 QIAO Pei-li,SUN Chun-yu,LUO Zhi-yong(.Tabu Particle Swarm Optimization Algorithm Based on Dynamic Disturbance Term[J].哈尔滨理工大学学报,2012,(04):87.
[2]郭敏,赵巧娥,高金城,等. 大数据下风电场混合算法建模研究[J].哈尔滨理工大学学报,2019,(01):48.[doi:10.15938/j.jhust.2019.01.008]
 GUO Min,ZHAO Qiao-e,GAO Jin-cheng,et al. Application of Hybrid Algorithm with Large Data in Wind Farm Modeling[J].哈尔滨理工大学学报,2019,(04):48.[doi:10.15938/j.jhust.2019.01.008]
[3]满春涛,刘博,曹永成. 粒子群与遗传算法优化支持向量机的应用[J].哈尔滨理工大学学报,2019,(03):87.[doi:10.15938/j.jhust.2019.03.014]
 MAN Chun -tao,LIU Bo,CAO Yong -cheng. The Application Based on Support Vector Machine Optimized by Particle Swarm Optimization and Genetic Algorithm[J].哈尔滨理工大学学报,2019,(04):87.[doi:10.15938/j.jhust.2019.03.014]

备注/Memo

备注/Memo:
黑龙江省自然科学基金项目(F2007-09)
更新日期/Last Update: 2009-11-12