[1]李冬梅‘,张煌‘,Yue WUZ,等.一类具有饱和发生率和时滞的SEIQR传染病模型稳定性分析[J].哈尔滨理工大学学报,2017,(02):78-83.[doi:10.15938/j.jhust.2017.02.015]
 LI DouR--meiZHANG YuYue WDONG Zai-fe.Stability Analysis of a SEIQR Epidemic Model with SaturatedIncidence and Time Delay[J].哈尔滨理工大学学报,2017,(02):78-83.[doi:10.15938/j.jhust.2017.02.015]
点击复制

一类具有饱和发生率和时滞的SEIQR 传染病模型稳定性分析()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2017年02期
页码:
78-83
栏目:
数理科学
出版日期:
2017-04-25

文章信息/Info

Title:
Stability Analysis of a SEIQR Epidemic Model with Saturated Incidence and Time Delay
文章编号:
1007-2683(2017)02-0078-06
作者:
李冬梅‘张煌‘Yue WUZ 董在飞‘
(1哈尔滨理工大学应用科学学院,黑龙江哈尔滨150080; 2. Sc;hlumber}er Western Gec;o, Katy Tx, 77494
Author(s):
LI DouR--mei ZHANG Yu Yue W护 DONG Zai-fe
(1. School of Applied Sciences, llarbin L niversity of Science and 2. Schlumberger Western Geco, Katy ’tx ’technology, llarbin 150080,China; 77494,LSA)
关键词:
关键词:时滞隔离持久性稳定性
Keywords:
Keywords:time delayisolationpermanencestability
DOI:
10.15938/j.jhust.2017.02.015
文献标志码:
A
摘要:
摘要:考虑了隔离和接种对疾病的控制影响,建立了一类具有饱和发生率的时滞SEIQR传 染病模型,给出了模型无病平衡点和地方病平衡点存在条件及模型的持久性,借助持久性构造了 Liapunov函数,证明了无病平衡点和地方病平衡点的全局稳定性,利用数值模拟验证了模型动力学 性质。
Abstract:
Abstract:Considering the effect of isolation and vaccination on control of disease,a SEIQR epidemic model with saturated incidence and time delay is established. Then,the existence condition of the disease-free equilibrium and endemic equilibrium and the permanence of model are obtained. The global stability of the disease-free equilibrium and endemic equilibrium are proved by constructing an appropriate Liapunov function,numerical simulations are presented to verify the properties of the models dynamics.

备注/Memo

备注/Memo:
收稿日期:2015一11一11 基金项目:黑龙江省自然利一学基金(A2016004). 作者简介:李冬梅(1962-),女,教授,硕士研究生导师;L,-mail ; dmli一013@ 126 张煌(1991一),女,硕士研究生; 董在飞(1989-),男,硕士研究生.
更新日期/Last Update: 2017-06-13