[1]陈宇,李红,黄仲洋.一种新的电容层析成像边界灰度补偿算法[J].哈尔滨理工大学学报,2016,(02):8-12.[doi:10.15938/j.jhust.2016.02.002]
 CHEN Yu,LI Hong-bo,HUANG Zhong-yang.A New Gray Boundary Compensation Algorithm for Electrical Capacitance Tomography System[J].哈尔滨理工大学学报,2016,(02):8-12.[doi:10.15938/j.jhust.2016.02.002]
点击复制

一种新的电容层析成像边界灰度补偿算法()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2016年02期
页码:
8-12
栏目:
计算机与控制工程
出版日期:
2016-04-25

文章信息/Info

Title:
A New Gray Boundary Compensation Algorithm for Electrical Capacitance Tomography System
文章编号:
1007-2683(2016)02-0008-05
作者:
陈宇李红黄仲洋
东北林业大学信息与计算机工程学院,黑龙江哈尔滨150040
Author(s):
CHEN Yu LI Hong-bo HUANG Zhong-yang
(College of Information and Computer, Engineering of Northeast Forestry University, Harbin 150040, China)
关键词:
电容层析成像 图像重建 蚁群算法 遗传算法 补偿算法
Keywords:
electrical capacitance tomography image reconstruction ant colony algorithm genetic algorithm compensation algorithm
分类号:
TP319
DOI:
10.15938/j.jhust.2016.02.002
文献标志码:
A
摘要:
由于电容层析成像(ECT)图像重建典型病态问题的不稳定性,在传统的电容层析成像算法的基础上提出了一种基于遗传蚁群算法(GAAC)的边界灰度补偿算法.在阐述了电容层析成像基本原理的基础上,通过推导多项式加速算法的数学模型,进行该算法的ECT图像重建.但由于传统的电容层析成像算法在图像边界上表现出极大的误差和不稳定性,所以提出了GAAC的边界灰度补偿算法.仿真和数值实验的结果显示,GAAC的边界灰度补偿算法是一种有效的电容层析成像方法,在ECT图像重建算法的领域提出了一个新的尝试.
Abstract:
To solve the instability of electrical capacitance tomography technology,a typical problem,based on Genetic Ant Colony Algorithm,an image reconstruction algorithm for electrical capacitance tomography is presented. On analysis of the basic principles of the ECT system,deduced mathematical model of polynomial acceleration algorithm to solve the problem of electrical capacitance tomography,and adopted it to reconstruct ECT image. However,the traditional electrical capacitance tomography algorithm in image edge showed great error and instability,so this paper proposes an genetic ant colony algorithm to compensate for the gray border around the image. Experimental results and simulation data indicate that this new algorithm presents a feasible and effective way to research on image reconstruction algorithm for Electrical Capacitance Tomography System.

相似文献/References:

[1]郭虹,李岩,张礼勇,等.12电极相干电容层析成像检测系统[J].哈尔滨理工大学学报,2009,(05):31.
 GUO Hong,LI Yan,ZHANG Li-yong.12-electrodes Electrical Capacitance Tomography Detection System Based on Relevant Technology[J].哈尔滨理工大学学报,2009,(02):31.
[2]李岩,朱艳丹,袁小花,等.基于ANSYS电容层析成像结构参数分析与优化[J].哈尔滨理工大学学报,2012,(01):54.
 LI Yan,ZHU Yan-dan,YUAN Xiao-hua,et al.Analysis and Optimization of Structural Parameters Based on ANSYS in ECT[J].哈尔滨理工大学学报,2012,(02):54.
[3]周云龙,衣得武,高云鹏,等.基于混合模型电容层析成像系统敏感矩阵建立[J].哈尔滨理工大学学报,2012,(02):40.
 ZHOU Yun-long,YI De-wu,GAO Yun-peng.Sensitivity Matrix Construction in Electrical Capacitance Tomography System Based on Mixed Models[J].哈尔滨理工大学学报,2012,(02):40.
[4]陈宇,许莉薇,江露,等.成像流型辨识算法[J].哈尔滨理工大学学报,2014,(04):111.
 CHEN Yu,XU Li-wei,JIANG Lu,et al.[J].哈尔滨理工大学学报,2014,(02):111.
[5]宋蕾,陈德运,姚玉梅,等.Elman神经网络在ECT系统流型辨识中的应用[J].哈尔滨理工大学学报,2014,(05):103.
 SONG Lei CHEN De-yun YAO Yu-mei LlJia-nan WANG Li-Li.Application of Elman Neural Network in Pattern Identification for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2014,(02):103.
[6]姚玉梅,陈德运,林甲楠,等.一种多小波电容层析成像图像融合方法[J].哈尔滨理工大学学报,2014,(05):88.
 YAO Yu-mei,CHEDe-yun,LlJia-nan,et al.Image Fusion Method Based on Multi Wavelet Transform for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2014,(02):88.
[7]林甲楠,陈德运,姚玉梅,等.一种分解型Quasi-Newton电容层析成像图像重建算法[J].哈尔滨理工大学学报,2014,(06):44.
 LlN Jia-nan,CHEN De-yun,YAO Yu-mei,et al.A Novel Factorized Quasi一Newton Image Reconstruction Algorithm for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2014,(02):44.
[8]陈宇,许莉薇,黄仲洋,等.SADE-ELM电容层析成像流型辨识算法[J].哈尔滨理工大学学报,2014,(06):32.
 CHEN Yu,XU Li-wei,HUANG Zhong-yang,et al.A Self一adaptive Different Evolution Extreme Learning Algorithm for Electrical Capacitance Tomography System[J].哈尔滨理工大学学报,2014,(02):32.
[9]李岩,杜永斌,宋海丰,等.ECT系统轮换对称svM图像重建改进算法[J].哈尔滨理工大学学报,2015,(03):40.
 LI Yan .DU Yong-bin .SONG Hai-fence.MAN Zhi-qian}.REN Xiang-h ua.Improved Method of Electrical Capacitance Tomography Based onSVM Algorithm of Cyclic Symmetrical Partition[J].哈尔滨理工大学学报,2015,(02):40.
[10]李洋,陈德运,高明,等.基于数字滤波的电容层析成像数据采集系统设计与实现[J].哈尔滨理工大学学报,2017,(01):96.[doi:10.15938/j.jhust.2017.01.017]
 LI YauR-,CHEN De-yuu,GAO MauR-,et al.Design and Implementation of Data Acquisition System Based onDigital Filtering Method for the Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2017,(02):96.[doi:10.15938/j.jhust.2017.01.017]
[11]陈德运,李乐天,胡海涛,等.基于迭代Tikhonov正则化的电容层析成像图像重建[J].哈尔滨理工大学学报,2009,(02):1.
 CHEN De-yun,LI Le-tian,HU Hai-tao.Image Reconstruction Algorithm Based on Iterated Tikhonov Regularization for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2009,(02):1.
[12]陈宇,孙帆,张健,等.三项共轭梯度的电容层析成像图像重建算法[J].哈尔滨理工大学学报,2009,(06):42.
 CHEN Yu,SUN Fan,ZHANG Jian.A Novel Three Conjugate Gradient Image Reconstruction Algorithm for Electrical Capacitance Tomography System[J].哈尔滨理工大学学报,2009,(02):42.
[13]陈宇,孙帆,张健,等.基于自适应权重粒子群的电容层析成像边界灰度补偿算法[J].哈尔滨理工大学学报,2010,(03):44.
 CHEN Yu,SUN Fan,ZHANG Jian.A Novel Gray Boundary Compensation Algorithm for Electrical Capacitance Tomography System Based on Adaptive Particle Swarm Weight[J].哈尔滨理工大学学报,2010,(02):44.
[14]于金平,陈德运,王莉莉.一种基于禁忌搜索的电容层析成像图像重建算法[J].哈尔滨理工大学学报,2016,(01):51.[doi:10.15938/j.jhust.2016.01.011]
 YU fin-ping,CHEN De-yun,WANG Li-li.A Novel Image Reconstruction Algorithm Based on Improved Taboo Search for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2016,(02):51.[doi:10.15938/j.jhust.2016.01.011]
[15]张云,陈德运,王莉莉.一种基于期望最大化条件的电容层析成像图像重建算法[J].哈尔滨理工大学学报,2016,(02):13.[doi:10.15938/j.jhust.2016.02.003]
 ZHANG Yun-long,CHEN De-yun,WANG Li-li.Image Reconstruction Algorithm Based on Expectation Maximization in Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2016,(02):13.[doi:10.15938/j.jhust.2016.02.003]
[16]王莉莉[],沈月[],陈德运[],等.PCA与小波变换的ECT图像融合方法[J].哈尔滨理工大学学报,2016,(04):30.[doi:10.15938/j.jhust.2016.04.006]
 WANG Li-li,SHEN Yue,CHEN De-yun,et al.Image Fusion of PCA and Wavelet Transform in Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2016,(02):30.[doi:10.15938/j.jhust.2016.04.006]

备注/Memo

备注/Memo:
收稿日期:2015-03-17
基金项目:中央高校基本科研业务费专项资金(DL12CB02); 黑龙江省教育厅科学技术研究项目(12513016); 黑龙江省博士后基金; 黑龙江省自然科学基金(F201347); 哈尔滨市科技创新人才专项资金(2013RFQXJ100)
作者简介:李红波(1990-),女,硕士研究生; 黄仲洋(1991-),男,硕士研究生.
通信作者:陈宇(1975-),男,博士后,副教授,硕士研究生导师,E-mail:hefu_chenyu@163.com
更新日期/Last Update: 2016-09-23