[1]时献江,罗建,宫秀芳.无传感器诊断方法及在风力发电中的应用与展望[J].哈尔滨理工大学学报,2014,(06):82-87.
 SHI Xian-jiang,LUO Jian,GONG Xiu-fang.Application of Sensor一less Diagnosis Approaches in the Wind Turbine Generator[J].哈尔滨理工大学学报,2014,(06):82-87.
点击复制

无传感器诊断方法及在风力发电中的应用与展望()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2014年06期
页码:
82-87
栏目:
数理科学
出版日期:
2014-12-25

文章信息/Info

Title:
Application of Sensor一less Diagnosis Approaches in the Wind Turbine Generator
文章编号:
1007一2683(2014)06一0082一06
作者:
时献江罗建宫秀芳
(哈尔滨理工大学机械动力工程学院,黑龙江哈尔滨150080)
Author(s):
SHI Xian-jiangLUO JianGONG Xiu-fang
(School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080,China)
关键词:
风力发电机传动系统无传感器诊断定子电流
Keywords:
wind turbine generator drive trainsensor-less diagnosisstator current summary
分类号:
TP273
文献标志码:
A
摘要:
针对风力发电机运行环境复杂,常规振动诊断技术应用困难问题,在介绍无传感器检测与诊断技术原理及发展的基拙上,从信号处理和仿真分析等角度详细分析了电机定子电流对齿轮、轴承等机械故障的感应机理.介绍微弱机械故障信息的预处理方法等研究成果,综述其在风力发电机组机械故障诊断应用的可行性.并对其在风力发电机组传动系统故障诊断中的存在的问题与应用进行了展望.
Abstract:
Traditional mechanical fault diagonal methods using vibration metrics face many difficulties in theapplication of the wind turbine generator due to complicated operation environments. Therefore,in this paper,weadopt the innovative approach based on the technology of wireless sensor diagnosis. We investigate into how the electric current in the motor stator reacts to the mechanical faults from components such as gears and bearings by using advanced signal process and simulations techniques. This paper also summarizes some experience in how topreprocess the minor mechenical faults information and its feasibility as well as prospects in the fault diagnosis ofwind turbine drive train system.

相似文献/References:

[1]吕艳玲,冯 曦,朱 博,等.双馈风力发电机 BP 神经网络并网策略研究[J].哈尔滨理工大学学报,2017,(05):40.[doi:10. 15938 /j. jhust. 2017. 05. 008]
 Lv Yan-ling,FENG Xi,ZHU Bo,et al.Research on Grid Connection Strategy Based on BP Neural Network PID Control for the Doubly-Fed Induction Generator[J].哈尔滨理工大学学报,2017,(06):40.[doi:10. 15938 /j. jhust. 2017. 05. 008]

备注/Memo

备注/Memo:
国家自然科学基金(51275136)
更新日期/Last Update: 2015-06-03