[1]林甲楠,陈德运,姚玉梅,等.一种分解型Quasi-Newton电容层析成像图像重建算法[J].哈尔滨理工大学学报,2014,(06):44-47.
 LlN Jia-nan,CHEN De-yun,YAO Yu-mei,et al.A Novel Factorized Quasi一Newton Image Reconstruction Algorithm for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2014,(06):44-47.
点击复制

一种分解型Quasi-Newton电容层析成像图像重建算法
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2014年06期
页码:
44-47
栏目:
计算机与控制工程
出版日期:
2014-12-25

文章信息/Info

Title:
A Novel Factorized Quasi一Newton Image Reconstruction Algorithm for Electrical Capacitance Tomography
文章编号:
1007一2683(2014)06一0044一04
作者:
林甲楠陈德运姚玉梅宋蕾
(哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080)
Author(s):
LlN Jia-nanCHEN De-yunYAO Yu-meiSONG Lei
(School of Computer Science and Technology, Harbin University of
Science and Technology, Harbin 150080,China)
关键词:
电容层析成像图像重建算法迭代算法分解拟牛顿
Keywords:
electrical capacitance tomographyimage reconstruction algorithm Iterative algorithm factorizedquasi-Newton
分类号:
TP391
文献标志码:
A
摘要:
针对电容层析成像系统中的“软场”效应和病态问题,在分析电容层析成像和Quasi -Newton算法原理的基拙上,基于非线性最小二乘的成像原理,提出了一种新的分解型Quasi-Newton电容层析成像算法,推导出了求解ECT反问题的分解型拟牛顿图像重建算法放的计算步骤,同时利用信赖域公式对目标函数的Hessian矩阵进行校正.仿真实验表明,基于分解型拟牛顿方法具有可行性,对于基本流型该算法与LBP算法相比,具有成像质量高和边界均匀稳定的特点,为ECT图像重建的研究提供了一个新的思路.
Abstract:
To solve the“soft field" nature and the ill-posed problem in electrical capacitance tomography technology,the paper proposes a new capacitance tomography algorithm based on a class of new factorized quasi-newtonmethods. The correcting formula of Hessian for the objective function is given. In the simulation,the feasibility ofusing this new algorithm for ECT problems is also discussed. And the result shows that the new algorithm has betterimage quality and stable boundary than the LBP algorithm,which provides a new way of thinking for ECT image reconstruction algorithm.

相似文献/References:

[1]陈德运,李乐天,胡海涛,等.基于迭代Tikhonov正则化的电容层析成像图像重建[J].哈尔滨理工大学学报,2009,(02):1.
 CHEN De-yun,LI Le-tian,HU Hai-tao.Image Reconstruction Algorithm Based on Iterated Tikhonov Regularization for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2009,(06):1.
[2]郭虹,李岩,张礼勇,等.12电极相干电容层析成像检测系统[J].哈尔滨理工大学学报,2009,(05):31.
 GUO Hong,LI Yan,ZHANG Li-yong.12-electrodes Electrical Capacitance Tomography Detection System Based on Relevant Technology[J].哈尔滨理工大学学报,2009,(06):31.
[3]陈宇,孙帆,张健,等.三项共轭梯度的电容层析成像图像重建算法[J].哈尔滨理工大学学报,2009,(06):42.
 CHEN Yu,SUN Fan,ZHANG Jian.A Novel Three Conjugate Gradient Image Reconstruction Algorithm for Electrical Capacitance Tomography System[J].哈尔滨理工大学学报,2009,(06):42.
[4]陈宇,孙帆,张健,等.基于自适应权重粒子群的电容层析成像边界灰度补偿算法[J].哈尔滨理工大学学报,2010,(03):44.
 CHEN Yu,SUN Fan,ZHANG Jian.A Novel Gray Boundary Compensation Algorithm for Electrical Capacitance Tomography System Based on Adaptive Particle Swarm Weight[J].哈尔滨理工大学学报,2010,(06):44.
[5]李岩,朱艳丹,袁小花,等.基于ANSYS电容层析成像结构参数分析与优化[J].哈尔滨理工大学学报,2012,(01):54.
 LI Yan,ZHU Yan-dan,YUAN Xiao-hua,et al.Analysis and Optimization of Structural Parameters Based on ANSYS in ECT[J].哈尔滨理工大学学报,2012,(06):54.
[6]陈宇,许莉薇,江露,等.成像流型辨识算法[J].哈尔滨理工大学学报,2014,(04):111.
 CHEN Yu,XU Li-wei,JIANG Lu,et al.[J].哈尔滨理工大学学报,2014,(06):111.
[7]宋蕾,陈德运,姚玉梅,等.Elman神经网络在ECT系统流型辨识中的应用[J].哈尔滨理工大学学报,2014,(05):103.
 SONG Lei CHEN De-yun YAO Yu-mei LlJia-nan WANG Li-Li.Application of Elman Neural Network in Pattern Identification for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2014,(06):103.
[8]姚玉梅,陈德运,林甲楠,等.一种多小波电容层析成像图像融合方法[J].哈尔滨理工大学学报,2014,(05):88.
 YAO Yu-mei,CHEDe-yun,LlJia-nan,et al.Image Fusion Method Based on Multi Wavelet Transform for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2014,(06):88.
[9]陈宇,许莉薇,黄仲洋,等.SADE-ELM电容层析成像流型辨识算法[J].哈尔滨理工大学学报,2014,(06):32.
 CHEN Yu,XU Li-wei,HUANG Zhong-yang,et al.A Self一adaptive Different Evolution Extreme Learning Algorithm for Electrical Capacitance Tomography System[J].哈尔滨理工大学学报,2014,(06):32.
[10]李岩,杜永斌,宋海丰,等.ECT系统轮换对称svM图像重建改进算法[J].哈尔滨理工大学学报,2015,(03):40.
 LI Yan .DU Yong-bin .SONG Hai-fence.MAN Zhi-qian}.REN Xiang-h ua.Improved Method of Electrical Capacitance Tomography Based onSVM Algorithm of Cyclic Symmetrical Partition[J].哈尔滨理工大学学报,2015,(06):40.

备注/Memo

备注/Memo:
国家自然科学基金(60572153,60972127);高等学校博士学科点专项科研基金(200802140001);黑龙江省自然科学基金(F200609, QC2012C059);黑龙江省教育厅科学技术研究项目(11541040,12511097).
更新日期/Last Update: 2015-06-03