[1]张鹏,罗正华,唐成达,等. 一种基于改进萤火虫算法的光伏MPPT控制方法[J].哈尔滨理工大学学报,2020,25(03):53-60.[doi:10.15938/j.jhust.2020.03.009]
 ZHANG Peng,LUO Zheng hua,TANG Cheng da,et al. Photovoltaic MPPT Control Method Based on Improved Firefly Algorithm[J].哈尔滨理工大学学报,2020,25(03):53-60.[doi:10.15938/j.jhust.2020.03.009]
点击复制

 一种基于改进萤火虫算法的光伏MPPT控制方法()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
25
期数:
2020年03期
页码:
53-60
栏目:
电气与电子工程
出版日期:
2020-06-25

文章信息/Info

Title:
 Photovoltaic MPPT Control Method Based on Improved Firefly Algorithm
文章编号:
1007-2683(2020)03-0053-08
作者:
 张鹏12罗正华2唐成达12黄建刚2
1.西华大学 电气与电子信息学院,成都 610039; 2.成都大学 信息科学与工程学院,成都 610106)
Author(s):
ZHANG Peng12LUO Zhenghua2TANG Chengda12HUANG Jiangang2
 
(1.School of Electrical Engineering and Electronic Engineering, Xihua University, Chengdu 610039, China;
2.School of Information Science and Engineering, Chengdu University, Chengdu 610106, China)

关键词:
 关键词:最大功率点跟踪局部阴影萤火虫算法模糊控制
Keywords:
Keywords:maximum power point tracking (MPPT) partial shading firefly algorithm (FA) fuzzy control
分类号:
TM615
DOI:
10.15938/j.jhust.2020.03.009
文献标志码:
A
摘要:
 
摘要:局部阴影条件下,光伏发电系统输出功率降低且PU曲线存在多峰值,标准萤火虫算法易陷入局部极值且收敛后期易发生震荡现象。针对这一问题,提出一种基于模糊-萤火虫算法(FFA)的MPPT算法,利用模糊控制器自适应调整随机移动步长因子α。算法运行前期赋予较大α值,萤火虫能快速向最优值附近移动,后期快速减小α值,避免震荡现象,使算法能稳定收敛。通过在MATLAB/Simulink下对FFA算法建模、仿真,并对比了标准萤火虫算法(FA)仿真结果,实验证明萤火虫算法与模糊控制技术相结合,能快速、准确、稳定的收敛到最大功率点,实现光伏发电最大效益输出。
Abstract:
 Abstract:Under partially shaded conditions, the power of the photovoltaic system becomes lower and the PU characteristic curve has multiple peaks. The standard firefly algorithm will fail to work and is prone to oscillation during the final phase of convergence. To solve this problem, the MPPT algorithm based on fuzzyfirefly algorithm (FFA) is proposed, which uses fuzzy controller to adaptively adjust the factor of random moving step. In the early stage of the algorithm,the fuzzy controller output a large α so that firefly can quickly move to the vicinity of the optimal value. In the later stage of algorithm, the value of α decrease sharply to avoid oscillation, so that the algorithm can converge stably. By modeling and simulating in the MATLAB/Simulink and comparing the simulation results of FFA with the standard firefly algorithm (FA), the experiment proves that the FFA can quickly, accurately and stably converge to the MPP so that the PV system can output the maximum power.

参考文献/References:

 


[1]万晓凤,张燕飞,余运俊,等.光伏电池工程数学模型的比较研究[J].计算机仿真,2014,31(3):113.
WAN Xiaofeng, ZHANG Yanfei, YU Yunjun, et al. Comparative Study of Mathematical Models for Photovoltaic Cell Engineering[J].Computer Simulation,2014,31(3):113.
[2]刘明亮,张逸,范元亮,等.一种基于变步长电导增量法的自适应MPPT控制策略[J].可再生能源,2017,35(5):681.
LIU Mingliang, ZHANG Yi, FAN Yuanliang, et al.An Adaptive MPPT Control Strategy Based on Variable Step Size Conductance Increment Method[J].Renewable Energy,2017,35(5):681.
[3]钟黎萍,张水平,顾启民.基于基因排序遗传算法的串联光伏组件MPPT研究[J].可再生能源,2017,35(3):384.
ZHONG Liping, ZHANG Shuiping, GU Qimin.Study on MPPT of Series Photovoltaic Module Based on Genetic Sorting Genetic Algorithm[J].Renewable Energy,2017,35(3):384.
[4]周磊,刘冀,雷涛,等. 间歇性遮挡对光伏组件发电量影响的研究[J].现代电力,2012(1):65.
ZHOU Lei, LIU Ji, LEI Tao, et al. Study on the Influence of Intermittent Occlusion on Power Generation of Photovoltaic Modules[J].Modern Electric Power,2012(1):65.
[5]王书金. 光伏发电系统MPPT算法功率损失改进研究[D].兰州:兰州交通大学,2018.
[6]孟凡明. 光伏发电最大功率跟踪智能控制技术的研究[D].长春:长春工业大学,2018.
[7]王雅,曾成碧,付文雯.基于蚁群算法的局部阴影光伏最大功率跟踪算法[J].内蒙古师范大学学报(自然科学汉文版),2015,44(4):523.
WANG Ya, ZENG Chengbi, FU Wenwen.A Local Shadow Photovoltaic Maximum Power Tracking Algorithm Based on Ant Colony Algorithm[J].Journal of Inner Mongolia Normal University(Natural Science Edition),2015,44(4):523.
[8]刘建辉,李博. 局部阴影下基于遗传蚁群算法对MPPT的研究[J].可再生能源,2017(1):13.
LIU Jianhui, LI Bo. Research on MPPT Based on Genetic Ant Colony Algorithm in Local Shadow[J].Renewable Energy,2017(1):13.
[9]万晓凤,胡伟,余运俊,等.遮蔽条件下光伏并网系统的全局MPPT控制[J].计算机仿真,2016,33(2):378.
Wan Xiaofeng, HU Wei, YU Yunjun, et al.Global MPPT Control of Photovoltaic Gridconnected System under Shading Conditions [J] .Computer Simulation, 2016,33(2): 378.
[10]何龙, 程树英. 基于遗传算法和扰动观察法的MPPT算法[J].现代电子技术,2009,32(24):199.
HE Long, CHENG Shuying. MPPT Algorithm Based on Genetic Algorithm and Disturbance Observation Method[J]. Modern Electronic Technology,2009,32(24):199.
[11]缑新科,马士伟,陈维铅,等.基于遗传算法与模式搜索法组合的MPPT技术[J].兰州理工大学学报,2018,44(1):91.
GOU Xinke, MA Shiwei, CHEN Weiqian, et al.MPPT Technology Based on Combination of Genetic Algorithm and Pattern Search Method [J] .Journal of Lanzhou University of Technology, 2018,44(1): 91.
[12]胡克用,胥芳,艾青林,等.适用于光伏多峰功率跟踪的改进型粒子群优化算法[J]. 西安交通大学学报,2015,49(4):140.
HU Keyong, XU Fang, AI Qinglin, et al. Improved Particle Swarm Optimization Algorithm for Photovoltaic Multipeak Power Tracking[J]. Journal of Xi′an Jiaotong University, 2015,49(4): 140.
[13]朱艳伟,石新春,但扬清,等.粒子群优化算法在光伏阵列多峰最大功率点跟踪中的应用[J].中国电机工程学报,2012,32(4):42.
ZHU Yanwei, SHI Xinchun, DAN Yangqing, et al. Application of Particle Swarm Optimization Algorithm in Multipeak Maximum Power Point Tracking of Photovoltaic Arrays[J].Proceedings of the CSEE, 2012,32(4):42.
[14]石季英,凌乐陶,薛飞,等.基于自适应种群粒子群的光伏全局MPPT研究[J].电力电子技术,2017,51(5):27.
SHI Jiying, LING Letao, XUE Fei, et al. Global MPPT Research of Photovoltaics Based on Adaptive Population Particle Swarm [J].Power Electronics, 2017,51(5):27.
[15]BARSALI S, CERAOLO M, PELACCHI P, et al. Control Techniques of Dispersed Generators to Improve the Continuity of Electricity Supply[C]//Power Engineering Society Winter Meeting, IEEE, 2002 (2): 789.
[16]林虹江,周步祥,冉伊,等. 基于遗传优化BP 神经网络算法的光伏系统最大功率点跟踪研究[J].电测与仪表,2015,52(5):35.
LIN Hongjiang, ZHOU Buxiang, RAN Yi, et al. Research on Maximum Power Point Tracking of Photovoltaic System Based on Genetic Optimization BP Neural Network Algorithm[J].Electrical Measurement & Instrumentation,2015,52(5):35.
[17]阳同光,桂卫华.神经网络反推控制在光伏系统最大功率点跟踪中的应用[J].太阳能学报,2016,37(12):3030.
YANG Tongguang , GUI Weihua. Application of Neural Network Reverse Thrust Control in the Maximum Power Point Tracking of Photovoltaic System [J]. Journal of Solar Energy, 2016, 37(12): 3030.
[18]吕晨旭.基于神经网络的光伏系统MPPT控制算法设计[J].现代电子技术,2018,41(3):132.
LV Chenxu.Design of MPPT Control Algorithm for Photovoltaic System Based on Neural Network [J] .Modern Electronic Technology, 2018,41(3):132.
[19]周德佳,赵争鸣,吴理博,等. 基于仿真模型的太阳能光伏电池阵列特性的分析[J]. 清华大学学报(自然科学版),2007,47(7):1109.
ZHOU Dejia, ZHAO Zhengming, WU Libo et al. Analysis of Solar Photovoltaic Cell Array Characteristics Based on Simulation Model[J]. Journal of Tsinghua University(Science and Technology), 2007, 47(7): 1109.
[20]YANG X S. Natureinspired Metaheuristic Algorithms [M]. Beckington: Luniver Press, 2010.



相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,15(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,15(03):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,17(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,17(03):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,17(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,17(03):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,18(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,18(03):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,18(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,18(03):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,18(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,18(03):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,18(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,18(03):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,18(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,18(03):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,18(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,18(03):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,18(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,18(03):18.

备注/Memo

备注/Memo:
 收稿日期: 2018-10-28
基金项目: 国家自然科学基金(61703060);四川省科技计划项目(2018JZ0065)
作者简介:
张鹏(1993—),男,硕士;
唐成达(1993—),男,硕士
通信作者:
罗正华(1966—),男,硕士,高级工程师,Email:1879576936@qq.com.
更新日期/Last Update: 2020-10-13