[1]张伟超,张立永. 主动加热式分布光纤测温对海底电缆悬空定位研究[J].哈尔滨理工大学学报,2020,25(03):47-52.[doi:10.15938/j.jhust.2020.03.008]
 ZHANG Wei chao,ZHANG Li yong. Active Heat Method with Distribution Fiber Temperature Sensingfor Suspension Location of Submarine Power Cable[J].哈尔滨理工大学学报,2020,25(03):47-52.[doi:10.15938/j.jhust.2020.03.008]
点击复制

 主动加热式分布光纤测温对海底电缆悬空定位研究()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
25
期数:
2020年03期
页码:
47-52
栏目:
电气与电子工程
出版日期:
2020-06-25

文章信息/Info

Title:
 
Active Heat Method with Distribution Fiber Temperature Sensing
for Suspension Location of Submarine Power Cable
文章编号:
1007-2683(2020)03-0047-06
作者:
 张伟超张立永
 富通集团有限公司 技术研究院,杭州 311400)
Author(s):
 ZHANG WeichaoZHANG Liyong
(Technology Research Institute, Futong Group Co., LTD., Hangzhou 311400, China)

关键词:
光纤传感主动加热光缆分布式光纤测温海缆悬空检测
Keywords:
 Keywords:optical fiber sensing active heated fiber distributed optical fiber temperature measurement submarine cable suspension detection
分类号:
TM855
DOI:
10.15938/j.jhust.2020.03.008
文献标志码:
A
摘要:
 
摘要:为检测海底电力电缆海下悬空,提出主动加热式分布光纤温度传感海缆悬空检测定位方法。基于分布式光纤测温和主动加热检测原理,建立三种典型敷设模型,利用有限元分析计算主动加热过程不同介质包围海缆的轴向温度分布规律。将多模光纤和加热铜缆布置在装有泥沙和水的箱体内构建实验系统;为消除初始温度影响,采用时域温度增量为热传递分析参量。实验表明,主动加热后泥沙和水介质的温度分布差异显著;加温后泥沙和水温均递增,持续加热水温基本不变,泥沙持续升温;介质分界面温度呈阶跃变化。研究证实,主动加热分布式光纤测温方法可有效检测海底电缆的悬空状态。
Abstract:
 Abstract:In order to solve the problem that it is difficult to detect submarine power cables suspended in the sea, an active heat method is proposed to detect and locate suspended cable in the sea with distribution optical fiber temperature sensing technology. Based on the principle of distributed fiber optic temperature measurement and active heat detection method, three typical models of laying submarine cable are designed. The temperature distribution law of submarine cable surrounded by different media is simulated during active heat process using the finite element method in thermal field. An experimental system is constructed by arranging the multimode optical fiber and heating copper cable in a box mixed with sediment sand and water. In order to eliminate the influence of initial temperature, the temperature increments are taken as the indicator parameter of the medium, which are measured by the optical fiber in the time domain. Then, the heat transfer characteristics are explored according to the temperature increments. The experimental results show that the temperature distribution of sediment sand and water is significantly different during active heating. The temperatures in the sand and water increase with time in the early stage of heating. When heating for some time, the temperature is basically unchanged in the water, but it is still rising in the sand. A step temperature change is demonstrated in the boundary of the medium. Based on the simulation and experiments, it is approved that active heat method with distribution fiber temperature sensing is effective to detect submarine cable suspending.


参考文献/References:

 

[1]魏新劳,朱博,庞兵,等. 500kV海底充油电缆护套绝缘在线监测方法[J]. 电机与控制学报,2015,19(5):21.
WEI Xinlao, ZHU Bo, PANG Bing, et al. Study on Online Jacket Insulation Monitoring for 500kV Submarine Oilfilled Cable[J]. Electric Machines and Control, 2015,19(5):21.
[2]李秀婧,高欢,刘骥. 脐带缆温度场与载流量分析计算[J].哈尔滨理工大学学报,2014,19(2):85.
LI Xiujing, GAO Huan, LIU Ji. Analysis on Temperature Field and Ampacity of Umbilical Cable[J]. Journal of Harbin University of Science and Technology, 2014, 19(2):85.
[3]应启良.我国发展直流海底电力电缆的前景[J].电线电缆,2012(3):1.
YING Qiliang. The Prospect of Development of DC Submarine Cables in China[J]. Electric Wire & Cable, 2012(3):1.
[4]宋光辉,梅文杰,陈涛,等. 高电压大容量三芯光纤复合海底电缆的研制[J].光纤与电缆及其应用技术,2018(4):37.
SONG Guanghui, MEI Wenjie, CHEN Tao, et al. Research on High Voltage and Large Capacity OPGW Submarine Cable[J]. Optical Fiber & Electric Cable and Their Applications, 2018(4):37.
[5]刘云鹏,许自强,陈铮铮,等. ±160kV直流XLPE海底电缆载流特性仿真及试验[J]. 电力自动化设备,2018,38(2):130.
LIU Yunpeng, XU Ziqiang, CHEN Zhengzheng, et al. Simulation and Experiment of Ampacity Characteristics for ±160kV DC XLPE Submarine Cable[J]. Electric Power Automation Equipment, 2018,38(2):130.
[6]岑贞锦,蒋道宇,张维佳,等.海底电缆检测技术方法选择分析[J].南方能源建设, 2017,4(3):85.
CEN Zhenjin, JIANG Daoyu, ZHANG Weijia, et al. Analysis on Selection of Submarine Cable Detection Technology[J]. Southern Energy Construction, 2017,4(3):85.
[7]孙文豪,马洪波.海底电力电缆的悬空损伤分析与防护[J].中国电力企业管理,2018(14):48.
SUN Wenhao, MA Hongbo. Suspension Samage Analysis and Protection of Submarine Cables[J]. China Power Enterprise Management, 2018(14):48. 
[8]赵亚,王强,宋俊俊,等. 基于分布式光纤测温的水管泄漏检测与定位[J]. 激光与红外, 2018, 48(7):891.
ZHAO Ya, WANG Qiang, SONG Junjun, et al. Detection and Location of Water Pipeline Leakage Based on Distributed Fiber Temperature Measurement[J]. Laser and Infrared, 2018,48(7):891.
[9]TAYAMA H, FUKUDA O, YAMAMOTO K, et al. 6.6kV XLPE Submarine Cable with Optical Fiber Sensors to Detect Anchor Damage and Defacement of Wire Armor[J]. IEEE Transactions on Power Delivery, 1995, 10(4):1718.
[10]FLODEN R, OLAFSEN K, LUNDEGAARD L, et al. Long Term Electrical Properties of XLPE Cable Insulation System for Subsea Applications at Very High Temperatures[C]// Conference on Electrical Insulation and Dielectric Phenomena, 2005:265.
[11]陆莹,黄辉.基于分布式光纤传感技术的高压海底电缆外力损坏仿真[J]. 电气技术,2012(12):87.
LU Ying, HUANG Hui. External Force Damage Simulation of Submarine Highvoltage Cable Based on Distributed Fiber Optic Sensor Technology[J]. Electrical Engineering, 2012(12):87.
[12]SAYDE C, GREGORY C, GILRODRIGUEZ M, et al. Feasibility of soil moisture monitoring with heated fiber optics[J]. Water Resources Research, 2010,46(6):2840.
[13]WU Jin, SHAO J, ZHANG E. Basic Strategy of Health Monitoring on Submarine Pipeline by Distributed Optical Fiber Sensor[C]// ASME Conference on Offshore Mechanics and Arctic Engineering, 2003(2):531. 
[14]张重远,贺鹏,刘云鹏,等.基于ROTDR的变压器绕组温度测量方法研究[J].高压电器,2018,54(11):200.
ZHANG Zhongyuan, HE Peng, LIU Yunpeng, et al. Method for Measuring Transformer Winding Temperature Based on ROTDR[J]. High Voltage Apparatus, 2018, 54(11):200.
[15]迟延光,白清,王宇,等.管道应力危害BOTDR分布式光纤检测系统[J].传感技术学报,2018,31(11):1775.
CHI Yanguang, BAI Qing, WANG Yu, et al. Distributed Optical Fiber System for Pipeline Strain Hazard Inspection Using BOTDR[J]. Chinese Journal of Sensors and Actuators, 2018,31(11):1775.
[16]李军,莫志刚,张书林.矿用本质安全型分布式光纤测温主机设计与实现[J].自动化技术与应用,2018,37(10):16.
LI Jun, MO Zhigang, ZHANG Shulin. Design and Realization of Mine Intrinsically Safe Distributed Optical Fiber Temperature Measurement[J]. Industry Control and Applications, 2018, 37(10):16.
[17]CAO Dingfeng, SHI Bin, ZHU Honghu. A Soil Moisture Estimation Method Using Actively Heated Fiber Bragg Grating Sensors [J]. Engineering Geology, 2018, 242:142.
[18]王芳,田宇,张新宇,等.流速及传热温差对换热器传热系数的影响[J].哈尔滨理工大学学报,2017,22(2):29.
WANG Fang, TIAN Yu, ZHANG Xinyu, et al. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference[J]. Journal of Harbin University of Science and Technology, 2017, 22(2):29.
[19]HAUSNER M B, SUAREZ F, GLANDER K E, et al. Calibrating Singleended Fiberoptic Raman Spectra Distributed Temperature Sensing Data[J]. Sensors, 2011 (11):10859.
[20]王刚,张博,王冠,等.模糊系统结合最小二乘的温升预测方法[J].哈尔滨理工大学学报,2017,22(6):52.
WANG Gang, ZHANG Bo, WANG Guan, et al. The Method of Predicting the Rise of Temperature by Combining Fuzzy System and Recursive Least Square[J]. Journal of Harbin University of Science and Technology, 2017, 22(6):52.



相似文献/References:

[1]张洪涛,付威,王春骞,等. 光纤温压法实现油井动液面的实时监测[J].哈尔滨理工大学学报,2018,23(06):1.[doi:10.15938/j.jhust.2018.06.001]
 ZHANG Hong-tao,FU Wei,WANG Chun-qian,et al. Real-time Monitoring of Oil-well Dynamic Liquid-level with Pressureand Temperature Based on Optical Fiber Sensor[J].哈尔滨理工大学学报,2018,23(03):1.[doi:10.15938/j.jhust.2018.06.001]

备注/Memo

备注/Memo:
 

收稿日期: 2018-12-06
基金项目:
国家重点研发计划(2018YFB0904403);国家自然科学基金(51607049)
作者简介:
张伟超(1984—),男,博士,副教授
通信作者:
张立永(1976—),男,博士,高级工程师,Email:pfzly@fso.com.cn



更新日期/Last Update: 2020-10-13