[1]Sheianov Aleksandr,康尔良. 氢气泵自适应无迹卡尔曼滤波无传感器控制[J].哈尔滨理工大学学报,2020,25(03):25-32.[doi:10.15938/j.jhust.2020.03.005]
 Sheianov Aleksandr,KANG Er liang. Sensorless Control of Hydrogen Pump Using Adaptive Unscented Kalman Filter[J].哈尔滨理工大学学报,2020,25(03):25-32.[doi:10.15938/j.jhust.2020.03.005]
点击复制

 氢气泵自适应无迹卡尔曼滤波无传感器控制()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
25
期数:
2020年03期
页码:
25-32
栏目:
电气与电子工程
出版日期:
2020-06-25

文章信息/Info

Title:
 Sensorless Control of Hydrogen Pump Using Adaptive Unscented Kalman Filter
文章编号:
1007-2683(2020)03-0025-08
作者:
 Sheianov Aleksandr康尔良
 
哈尔滨理工大学 电气与电子工程学院,哈尔滨 150080)
Author(s):
 Sheianov Aleksandr KANG Erliang
 

(School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, China)

关键词:
 无传感器控制自适应卡尔曼滤波氢气泵
Keywords:
 Keywords:sensorless control adaptive unscented kalman filter hydrogen pump
分类号:
TM351
DOI:
10.15938/j.jhust.2020.03.005
文献标志码:
A
摘要:
 摘要:提出了一种氢气泵用PMSM转子位置新型非线性估算方法。卡尔曼滤波常用于在非线性系统,在计算量相同的情况下,无迹卡尔曼滤波器(UKF)较扩展卡尔曼滤波器(EKF)的计算结果更为准确,因为应用较多。在燃料电池系统中,氢气泵用PMSM的负载常发生持续变化或突变;由于UKF采用固定过程噪声协方差(Q矩阵),无法响应负载变换造成的过程噪声变化,传统卡尔曼滤波器的性能可能下降。提出了一种自适应UKF方法,通过计算UKF的自适应增益,以补偿实际残差协方差与滤波器导出值之间的不匹配,从而在负载变换的情况下,保证了转子位置估算的精度。最后,搭建氢气泵用PMSM控制系统,并进行了自适应UKF转子位置估算。实验结果验证了该算法的可行性和有效性。
Abstract:
 Abstract:This paper demonstrates a special and new type of nonlinear observer for a permanent magnet synchronous motor used in hydrogen pump applications. For nonlinear systems, the unscented Kalman filter (UKF) is a very popular approach for the controller design. Some researches have shown that the UKF is usually more accurate than the extended Kalman filter (EKF) whereas the computation burden is the same in both cases. However, the performance of traditional Kalman filter may degrade when process noise and load are constantly changing or a sudden disturbance occurs due to the fixed process noise covariance (Q matrix) in the filter, which is the case in fuel cell systems where a hydrogen pump is used. An adaptive gain is calculated to compensate for the mismatch between the actual residual covariance and the deduced value from the filter, ensuring that the sequence of residual is uncorrelated. Also, the derivation of the proposed adaptive UKF is explained in details. Finally, experimental tests under sensorless position control for hydrogen pump are carried out with the proposed method, in which the feasibility and effectiveness of the algorithm is shown.

参考文献/References:

 [1]YOU C J, LI J, HUANG X Y, et al. A Fullspeed Sensorless Control Algorithm for Interior Permanent Magnet Synchronous Motor Using Slidingmode Observer and hf Signal Injection[C]// Vehicle Power and Propulsion Conference (VPPC). Belfort, France: IEEE, 2017:1.
[2]YANG S C, HSU Y L, CHEN G R. Design Issues for Permanent Magnet Machine Sensorless Drive Combining Saliencybased and Backemfbased Control in the Entire Speed Range[C]// International Conference on Industrial Technology (ICIT). Taipei, Taiwan: IEEE, 2016:1270.
[3]YANG P, XIAO X, ZHANG M, et al. Highprecision Rotor Position Estimation for Highspeed SPMSM Drive Based on State Observer and Harmonic Elimination[C]// The 2018 International Power Electronics Conference, Nigata, Japan, 2018:1966.
[4]SIMON D. Optimal State Estimation[M]. New Jersey: John Wiley & Sons, 2006.
[5]DHAOUADI R, MOHAN N, NORUM L. Design and Implementation of an Extended Kalman Filter for the State Estimation of a Permanent Magnet Synchronous Motor [J]. IEEE Transactions on Power Electronics, 1991, 6(3): 491.
[6]JULIER S J, UHLMANN J K. A New Extension of the Kalman Filter to Nonlinear Systems[C]// Signal Processing, Sensor Fusion, and Target Recognition VI. Orlando, FL, United States: AeroSense, 1997:182.
[7]MERWE R, WAN E A. Efficient Derivativefree Kalman Filters for Online Learning [C]// Proceeding of European Symposium on Artificial Neural Networks (ESANN), 2001:205. 
[8]STENGER B, MENDONA P R S, CIPOLLA R. Modelbased Hand Tracking Using an Unscented Kalman Filter[C]// Proceedings of the British Machine Conference, University of Manchester: BMVA Press, 2001:63.
[9]AKIN B, ORGUNER U, ERSAK A. State Estimation of Induction Motor Using Unscented Kalman Filter[C]// Proceedings of 2003 IEEE Conference on Control Applications, Istanbul, Turkey, IEEE, 2003:915.
[10]BORSJE P, CHAN T F, WONG Y K, et al. A Comparative Study of Kalman Filtering for Sensorless Control of a Permanentmagnet Synchronous Motor Drive[C]// International Conference on Electric Machines and Drives. San Antonio, TX, USA, IEEE, 2005:815.
[11]TAIBI D, BENNIS O, BENCHABANE F, et al. Adaptive Nonlinear Control Combined with Unscented Kalman Filter for Permanent Magnet Synchronous Motor Fed by AC/DC/AC Converter[C]// International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Istanbul, Turkey, IEEE, 2011:26.
[12]MOON C, NAM K. H, JUNG M. K, et al. Sensorless Speed Control of Permanent Magnet Synchronous Motor Using Unscented Kalman Filter[C]// SICE Annual Conference, Akita, Japan, IEEE, 2012:2018.
[13]QUANG N. K, TUNG D. D, HA Q. P. FPGAbased Sensorless PMSM Speed Sontrol Using Adaptive Extended Kalman Filter[C] // IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, IEEE, 2015:1650.
[14]LIU Z T, WANG Y Y, DU J N, et al. RBF Networkaided Adaptive Unscented Kalman Filter for Lithiumion Battery SOC Estimation in Electric Vehicles[C] // IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, IEEE, 2012:1673.
[15]GAO B B, GAO S S, GAO L, et al. An Adaptive UKF for Nonlinear State Estimation Via Maximum Likelihood Principle[C]// 6th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, IEEE, 2016: 117.
[16]DARBA A, SALAHSHOOR K. EKF and UKFbased Estimation of a Sensorless Axial Flux pm Machine under an Internalmodel Control Scheme Using a Svpwm Inverter[C] // Proceedings of the 29th Chinese Control Conference, Beijing, China, IEEE, 2010:5676.
[17]XIA Q, RAO M, YING Y, et al. Adaptive Fading Kalman Filter with an Application[J]. Automatica, 1994, 30(8):1333.
[18]MOHAMED A, SCHWARZ K. Adaptive Kalman Filtering for INS/GPS[J]. Journal of Geodesy, 1999, 73( 4): 193.
[19]TIAN L, ZHAO J, SUN J. Sensorless Control of Interior Permanent Magnet Synchronous Motor in LowSpeed Region Using Novel Adaptive Filter [J]. Energies, 2016, 9(12):1084.
[20]AWAN H. A. A., TUOVINEN T, SAARAKKALA S. E, et al. DiscreteTime Observer Design for Sensorless Synchronous Motor Drives [J]. IEEE Trans. Ind. Appl., 2016, 52(5):3968.
[21]JUNG T U, JANG J H, PARK C S. A BackEMF Estimation Error Compensation Method for Accurate Rotor Position Estimation of Surface Mounted Permanent Magnet Synchronous Motors [J]. Energies, 2017, 10(8):1160.
[22]CHUBICH V, CHERNIKOVA O. Adaptive Fading Kalman Filter with Applications in Identification Discrete System[C]// 13th International ScientificTechnical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Russia, IEEE, 2016:385.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,15(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,15(03):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,17(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,17(03):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,17(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,17(03):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,18(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,18(03):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,18(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,18(03):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,18(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,18(03):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,18(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,18(03):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,18(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,18(03):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,18(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,18(03):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,18(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,18(03):18.

备注/Memo

备注/Memo:
 

收稿日期: 2018-09-13
基金项目: 黑龙江省科技攻关资助项目(GC04A517).
作者简介:
康尔良(1967—),男,教授,硕士研究生导师
通信作者:
Sheianov Aleksandr(1994—), 男,硕士研究生,Email:shey.alex@yandex.ru.

更新日期/Last Update: 2020-10-13