[1]姜久兴,闫俊杰,孙宇,等. 三维花状MoS2/Fe2O3纳米异质结构的制备及其光催化性质研究[J].哈尔滨理工大学学报,2020,25(03):11-17.[doi:10.15938/j.jhust.2020.03.003]
 JIANG Jiu xing,YAN Jun jie,SUN Yu,et al. Preparation and Photocatalytic Activity of 3D Flowerlike MoS2/Fe2O3 NanoHeterostructures[J].哈尔滨理工大学学报,2020,25(03):11-17.[doi:10.15938/j.jhust.2020.03.003]
点击复制

 三维花状MoS2/Fe2O3纳米异质结构
的制备及其光催化性质研究
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
25
期数:
2020年03期
页码:
11-17
栏目:
材料科学与工程
出版日期:
2020-06-25

文章信息/Info

Title:
 
Preparation and Photocatalytic Activity of 3D Flowerlike 
MoS2/Fe2O3 NanoHeterostructures
文章编号:
1007-2683(2020)03-0011-07
作者:
 姜久兴闫俊杰孙宇王姝
 哈尔滨理工大学 理学院, 哈尔滨 150080)
Author(s):
 JIANG JiuxingYAN JunjieSUN YuWANG Shu
 (School of Sciences, Harbin University of Science and Technology,Harbin 150080,China)
关键词:
 关键词:三氧化二铁二硫化钼异质结构光催化
Keywords:
 Keywords:ferric oxide molybdenum disulfide heterostructure photocatalysis
分类号:
O469
DOI:
10.15938/j.jhust.2020.03.003
文献标志码:
A
摘要:
 摘要:采用两步水热法制备了MoS2/Fe2O3纳米复合材料。对其结构、微观形貌、表面化学成分、光学性能等进行了系统表征,发现当Mo/Fe元素原子比增加到3∶〖KG-*3/5〗1以上时,SEM观察到MoS2/Fe2O3复合材料的形貌呈现独特的三维纳米花状结构,通过HRTEM可证实异质结构的存在。XRD显示复合材料的物相结构均由六方结构赤铁矿相Fe2O3和辉钼矿相MoS2构成,无任何二次杂质相的存在。PL结果表明异质结构的存在有效加速光生电子空穴对分离,因此在光催化测试中,MoS2/Fe2O3纳米复合材料表现出优异的光催化性能,其中原子数分数30% MoS2/Fe2O3的光催化活性最高,20 min降解全部的20 mg/L亚甲基蓝指示剂,其催化活性几乎是单一Fe2O3的10倍。
Abstract:
 Abstract:MoS2/Fe2O3 nanocomposites were prepared by twostep hydrothermal method The structure, morphology, surface chemical composition and optical properties of MoS2/Fe2O3 composites were systematically characterized It was found that when the atomic ratio of Mo/Fe was increased to more than 3∶〖KG-*3/5〗1, the morphology of the composites presented a unique threedimension flowerlike structure, and the existence of the nanoheterostructure could be confirmed by HRTEM XRD analysis showed that the phase structure of the composites was composed of hexagonal hematite Fe2O3 and molybdenite MoS2 without any impurity phase In addition, PL results illustrated that the separation of photogenerated electronhole pair was effectively accelerated by the effect of heterostructure Therefore, MoS2/Fe2O3 nanocomposites exhibited excellent photocatalytic performances, among with 30 at% MoS2/Fe2O3 possessed the best photocatalytic activity on photodegrading 20 mg/L methylene blue solution within 20 min, which was almost 10 times than bare Fe2O3 nanoparticals

参考文献/References:

 
[1]FIGISHIMA A, HONDA K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972(238): 37.
[2]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004, 306(5696): 666.
[3]NETO A H C, GUINEA F, PERES N M R, et al. The Electronic Properties of Graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109.
[4]EDA G, CHHOWALLA M. Chemically Derived Graphene Oxide: Towards LargeArea ThinFilm Electronics and Optoelectronics[J]. Advanced Materials, 2010, 22(22): 2392.
[5]BOGUE R. Graphene Sensors: A Review of Recent Developments[J]. Sensor Review, 2014, 34(3): 233.
[6]ZHU J, YANG D, YIN Z, et al. Graphene and GrapheneBased Materials for Energy Storage Applications[J]. Small, 2014, 10(17): 3480.
[7]CHA J J, KRISTIE J K, KEVIN C Y, et al. Twodimensional Chalcogenide Nanoplates as Tunable Metamaterials Via Chemical Intercalation[J]. Nano Lett, 2013, 13(12): 5913.
[8]FENTON H J. Oxidation of Tartaric Acid in Presence of Iron[J].Journal of the Chemical Society, 1894 (65): 899.
[9]CHEN G. Synthesis of Scaly Sn3O4/TiO2 Nanobelt Heterostructures for Enhanced UVvisible Light Photocatalytic Activity[J]. Nanoscale, 2015 (7): 3117.
[10]LI Y, RAO Y, WANG S Y, et al. Probing Symmetry Properties of Fewlayer MoS2 and hBN by Optical Secondharmonic Generation[J]. Nano Lett, 2013, 13(7): 3329.
[11]HAN Sancan, HU Linfeng, LIANG Ziqi, et al. OneStep Hydrothermal Synthesis of 2D Hexagonal Nanoplates of αFe2O3/Graphene Composites with Enhanced Photocatalytic Activity[J]. Advanced Functional Materials, 2014 (9): 5719.
[12]WANG K P, WANG J, FAN J T, et al. Ultrafast Saturable Absorption of Twodimensional MoS2 Nanosheets[J]. ACS Nano, 2013, 7(10): 9260.
[13]YANG Xijia, SUN Haiming, ZHANG Lishu, et al. High Efficient PhotoFenton Catalyst of αFe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors[J]. Scientific Report, 2016 (6): 1.
[14]EISENHAUER H R. Oxidation of Phenolic Wastes[J]. Water Pollution Control Federation, 1964 (36): 1116.
[15]ZEPP R G, FAUST B C, HOIGNE J. Hydroxyl Radical Formation in Aqueous Reaction (pH 3-8) of Iron(Ⅱ) with Hydrogen Peroxide the PhotoFenton Reaction[J]. Environ. Sci. Technol, 1992, 26(2): 313.
[16]FU Z Y, XING S, SHEN Tao, et al. The Hydrothermal Synthesis and Microstructure Characterization of Flowerlike MoS2 Nanosheets[J]. Chinese Journal of Physics, 2015, 64(1): 204.
[17]SUN B, LI Q L, CHEN P. Roomtemperature Ferromagnetism of Singlecrystalline MoS2 Nanowires[J]. Micro & Nano Letters, 2014(9):468.
[18]XU S, LI D, WU P. Onepot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction[J]. Adv. Func. Mater, 2015(25):1127.
[19]ZONG X, WU G P, YAN H J, et al. Photocatalytic H2 Evolution on MoS2/CdS Catalysts under Visible Light Irradiation[J]. J. Phys. Chem. C., 2010(114):1963.
[20]HAN S. Onestep Hydrothermal Synthesis of 2D Hexagonalnanoplates of αFe2O3/graphene Composites with Enhanced Photocatalytic Activity[J]. Adv. Funct. Mater, 2014 (24): 5719.
[21]WANG Shu,TANG Bowen, YANG Wenlong, et al. The FlowerLike Heterostructured Fe2O3/MoS2 Coated by Amorphous SiOxyhydroxides: An Effective Surface Modification Method for Sulfide Photocatalysts in PhotoFenton Reaction[J]. J. Alloy. Compd., 2019 (787): 1099.
[22]AHMED Y, ZAHIRA Y, AKHTAR P. Degradation and Mineralization of Methylene Blue Using a Heterogeneous PhotoFenton Catalyst under Visible and Solar Light Irradiation[J]. Catal. Sci. Tech, 2016(6):1222.
[23]QIU Bocheng. Stberlike Method to Synthesize Ultradispersed Fe3O4 Nanoparticles on Graphene with Excellent PhotoFenton Reaction and Highperformance Lithium Storage[J]. Appl. Catal. B, 2016 (183):216.
[24]YUN S, LEE Y C, PARK H S. Phasecontrolled Iron Oxide Nanobox Deposited on Hierarchically Structured Graphene Networks Forlithium Ion Storage and Photocatalysis[J]. Scientific Report, 2016(6):1.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,15(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,15(03):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,17(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,17(03):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,17(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,17(03):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,18(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,18(03):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,18(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,18(03):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,18(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,18(03):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,18(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,18(03):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,18(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,18(03):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,18(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,18(03):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,18(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,18(03):18.

备注/Memo

备注/Memo:
 收稿日期: 2019-12-17
基金项目:
国家自然科学基金(51672062);黑龙江省自然科学基金(E2018042);黑龙江省普通高校基本科研业务费(LGYC2018JC006).
作者简介:
姜久兴(1963—),男,博士,教授, 硕士研究生导师;
闫俊杰(1992—),男,硕士研究生.
通信作者:
王姝(1986—),女,博士,讲师, 硕士研究生导师,Email: swang@hrbusteducn.
更新日期/Last Update: 2020-10-13