[1]翟文杰,郝建树. 往复振动碳化硅工件/铸铁抛光盘接触温度仿真[J].哈尔滨理工大学学报,2019,(03):48-53.[doi:10.15938/j.jhust.2019.03.008]
 ZHAI Wen jie,HAO Jian shu. Contact Temperature Simulation of Reciprocating Vibrating Silicon Carbide Workpiece/Cast Iron Polishing Disc[J].哈尔滨理工大学学报,2019,(03):48-53.[doi:10.15938/j.jhust.2019.03.008]
点击复制

 往复振动碳化硅工件/铸铁抛光盘接触温度仿真()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2019年03期
页码:
48-53
栏目:
电气与电子工程
出版日期:
2019-06-24

文章信息/Info

Title:
 Contact Temperature Simulation of Reciprocating Vibrating  Silicon Carbide Workpiece/Cast Iron Polishing Disc
文章编号:
1007-2683(2019)03-0048-06
作者:
 翟文杰1郝建树2
 (1.哈尔滨工业大学 机电工程学院,黑龙江 哈尔滨 150001;2.中国农业大学 工学院,北京 100083)
Author(s):
 ZHAI Wenjie1HAO Jianshu2
 (1.School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China;
2.College of Engineering, China Agricultural University, Beijing 100083, China)
关键词:
 磨削热瞬态温度摩擦副抛光仿真分析
Keywords:
 grinding heat transient temperature frictional pairs polishing simulation analysis
分类号:
TG580.1
DOI:
10.15938/j.jhust.2019.03.008
文献标志码:
A
摘要:
 水平往复振动辅助抛光可提高材料去除效率。为了揭示振动辅助抛光对研抛效率的摩擦温度效应,依据传热学的相关理论,采用Comsol软件对往复振动条件下的碳化硅工件与铸铁抛光盘摩擦副的界面温度分布进行瞬态仿真分析。结合参数化扫描的方法,研究了不同工况条件,如水平振动频率、振幅、正压力等因素,对试件表面参考点和参考线温度的影响规律,以期获得最佳的振动辅助研抛工况条件。仿真分析结果表明:在水平往复振动抛光过程中,碳化硅工件的最高温度随着振动频率的增加呈现先升高再降低、而后继续升高的趋势;工件的最高温度随着振幅和载荷的增加呈现线性升高的趋势。
Abstract:
 The horizontal reciprocating/vibratingassisted polishing can improve the efficiency of materials removal rate(MRR).  In order to evaluate its thermal effect in this polishing process, the interface temperature distribution of the workpiece/polishing plate under reciprocating vibration condition was simulated by the Comsol software based on the heat transmission theory. Using the parameter scanning method, the distribution and variation of the SiC wafer surface temperature at middle point and the reference radius line was simulated and studied under different working conditions, eg, translational vibrating frequency, amplitude, applied pressure, to obtain the best polishing condition.Simulation results show that in the horizontal reciprocating vibration assisted polishing process,with the increase of vibration frequency, the maximum temperature of SiC specimen increases first, then decreases, and finally continues to rise. The maximum temperature of SiC specimen increases linearly with the increase of vibration amplitude and applied load.

参考文献/References:

[1]LEFEBVRE A, LIPINSKI P, VIEVILLE P Experimental Analysis of Temperature in Grinding at the Global and Local Scales[J]. Machine Science and Technology, 2008, 12: 1[2]GONZALEZSANTANDER J L Analytic Solution for Maximum Temperature during Cut in and Cut out in Surface Grinding [J]. Applied Mathematical Modelling, 2016, 40:2356[3]LEFEBVRE A, VIEVILLE P, LIPINSKI P Numerical Analysis of Grinding Temperature Measurement by the foil/workpiece Thermocouple Method[J]. International Journal of Machine Tools and Manufacture, 2006, 46: 1716
[4]LEFEBVRE A, LANZETTA F, LIPINSKI P Measurement of Grinding Temperatures using a Foil/Workpiece Thermocouple [J]. International Journal of Machine Tools and Manufacture, 2012, 58: 1
[5]ZHANG X, ZHU X, CHENG L The Influence of Ultrasonic Honing Parameters to Workpiece Surface Temperature[C]. MATEC Web of Conferences, 2016,45:04008-p1- p6
[6]BLOK HTheoretical Study of Temperature Rise at Surface of Actual Contact Under Oiliness Conditions[J].Proceedings of the Institution of Mechanical Engineers, 1937,2:222[7]JAEGER J CMoving Sources of Heat and the Temperature of Sliding Contacts[J]. Proceedings of Royal Society of New South Wales, 1942,76:203
[8]GECIM B,WINTER W OTransient Temperature in the Vicinity of an Asperity Contact [J].ASME Journal of Tribology,1985,107(3):333
[9]GREENWOOD J A,ALLISTONGREINER A FSurface Temperature in a Fretting Contact[J].Wear,1992,155(2):269
[10]QIU L,CHENG H STemperature Rise Simulation of ThreeDimensional Rough Surfaces in Mixed Lubricated Contact[J].ASME Journal of Tribology,1998,120(2):310
[11]GAO J,LEE S,AI X,et alAn FFTBased Transient Temperature Model for General ThreeDimensional Rough Surface Contacts[J].ASME Journal of Tribology, 1999, 122(3):519
[12]MANSOURI M,KHONSARI M MSurface Temperature in Oscillating Sliding Interfaces[C]//Tribology Division ASME/STLE 2004 International Joint Tribology ConferenceLong Beach,California, USA: ASME, 2004: 1397
[13]WEN J,KHONSARI M MOn the Temperature Rise of Bodies Subjected to Unidirectional or Oscillating Frictional Heating and Surface Convective Cooling[J].Tribology Transactions, 2009,52(3):310
[14]WEN J,KHONSARI M M Transient Temperature Involving Oscillatory Heat Source with Application in Fretting Contact[J]. Tribology Transactions, 2009,52(3):310 
[15]WU Y,JIN H,LI YSimulation of Temperature Distribution in Disc Brake Considering a Real Brake pad Wear[J]. Trbology Letters,2014,56(2):205
[16]ADAMOWICZ A, GRZES P Analysis of Disc Brake Temperature Distribution during Single Braking Nonaxisymmetric Load [J].Applied Thermal Engineering, 2011,31: 1003[17]王国顺 列车盘式制动器温度场与振动模态的分析研究[D].大连:大连交通大学,2011 
[18]KENNEDY F E, TIAN X Modelling Sliding Contact Temperatures, Including Effects of Surface Roughness and Convection[J].ASME Journal of Tribology, 2016, 138(4): 042101-1-042101-9
[19]ABDULLAH Oday I, SCHLATTMANN JTemperature Analysis of a Pinondisc Tribology Test Using Experimental and Numerical Approaches[J]. Friction,2016,4(2):135[20]LING F F,LAI W M,Lucca D AFundamentals of Surface Mechanics with Applications[M]. SpringerVerlag, New York:2002:69-75042101-1

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(03):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(03):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(03):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(03):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(03):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(03):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(03):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(03):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(03):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(03):18.

备注/Memo

备注/Memo:
 收稿日期: 2019-02-01
基金项目:
国家自然科学基金(51475119)
作者简介:
郝建树(1998—),男
通信作者:
翟文杰(1964—),男,教授,博士研究生导师,E-mail:1181288943@qq.com.
更新日期/Last Update: 2019-06-20