[1]左明霞,刘红娇. 赋Orlicz范数的MusielakOrlicz序列空间的kβ点[J].哈尔滨理工大学学报,2019,(01):118-123.[doi:10.15938/j.jhust.2019.01.020]
 ZUO Ming xia,LIU Hong jiao. On the (kβ) Points of MusielakOrlicz Sequence SpacesEquipped with the Orlicz Norm[J].哈尔滨理工大学学报,2019,(01):118-123.[doi:10.15938/j.jhust.2019.01.020]
点击复制

 赋Orlicz范数的MusielakOrlicz序列空间的kβ点
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2019年01期
页码:
118-123
栏目:
数理科学
出版日期:
2019-08-06

文章信息/Info

Title:
 On the (kβ) Points of MusielakOrlicz Sequence Spaces
Equipped with the Orlicz Norm

作者:
 左明霞刘红娇
 (哈尔滨理工大学 理学院,黑龙江 哈尔滨 150080)
Author(s):
 ZUO MingxiaLIU Hongjiao
(School of Applied Sciences, Harbin University of Science and Technology, Harbin 150080, China)
关键词:
 关键词:MusielakOrlicz序列空间Orlicz范数kβ点局部kβ性质
Keywords:
 Keywords:MusielakOrlicz sequence spaces Orlicz norm (kβ) points local property (kβ)
分类号:
O177.3
DOI:
10.15938/j.jhust.2019.01.020
文献标志码:
A
摘要:
 摘要:MusielakOrlicz空间是经典Orlicz空间的推广,研究了赋Orlicz范数的MusielakOrlicz序列空间的kβ点的刻画问题首先在Banach空间中引入了kβ点的定义,然后给出了赋Orlicz范数的MusielakOrlicz序列空间中kβ点的判别条件,从而得出了该空间具有局部kβ性质的等价条件
Abstract:
 Abstract:MusielakOrlicz spaces is the generalization of classical Orlicz spaces In this paper, we investigated the problem of characterization of the (kβ) points in Musielak Orlicz sequence spaces equipped with the Orlicz norm Firstly, the definition of (kβ) point is introduced Afterward a criteria for (kβ) points in MusielakOrlicz sequence spaces equipped with the Orlicz norm was given, and then we got the equivalent condition for local property (kβ) of these spaces

参考文献/References:

 [1]WANG T F, CUI Y A, MENG C H. Local Property (β) in Orlicz Spaces[J]. Mathematical Balkanica, 2000, 14(1-2): 101.
[2]SUN L H. Compactly and Weakly Compactly Strongly Exposed Properties in MusielakOrlicz Sequence Spaces Equipped with the Orlicz Norm[J]. Communications in Computer & Information Science, 2014, 472:416.
[3]YAO H L , WANG T F . Maluta’s Coefficient of MusielakOrlicz Sequence Spaces [J]. Acta Mathematica Sinica, 2005, 21(4): 699.
[4]WANG J M, LIU X B, CUI Y A. Local Uniform Rotundity in MusielakOrlicz Sequence Space Equipped with the Luxemburg Norm[J]. Comment. math. prace Mat, 2017, 46(1): 131.
[5]CHEN S T.Geometry of Orlicz Spaces [M]. Warzawa:Dissertations Math, 1996.
[6]左明霞.Banach空间和Orlicz空间的若干几何性质[D].长春: 东北师范大学,2010.
[7]HUDZIK H, YE Y N. Support Functionals and Smoothness of MusielakOrlicz Sequence Spaces Equipped with Luxemburg Norm[J]. Comment Math Univ. Carolina, 1990, 31(4): 661.
[8]曹连英,王廷辅.MusielakOrlicz空间K(x)≠的问题[J].哈尔滨师范大学学报(自然科学版),2000,16(4):1.
[9]DENKER M, HUDZIK H. Uniformly nonl(1)n in MusielakOrlicz Sequence Spaces[J]. Processdings of the Indian Academy of Science Mathematical Science, 1991, 101 (2): 71.
[10]CAO L, WANG T. Criteria for kM<∞ in MusielakOrlicz Spaces[J]. Cementations Mathematical Universitatis Carolina, 2001, 42(2):259.
[11]CUI Y A. Some Convexities of MusielakOrlicz Sequence Spaces[J]. J. math, 1995, 15(3): 291.
[12]KAMIN'SKA A. Flat OrliczMusielak Sequence Spaces[J]. Bull. acad. polon. sci. sér. sci. math, 1982, 30(7-8): 347.
[13]HUDZIK H, KAMIN〖DD(〗'〖DD)〗SKA A. On Uniformly Convexifiable and Bconvex MusielakOrlicz Spaces[J]. 1985,25(1): 59.

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(01):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(01):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(01):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(01):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(01):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(01):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(01):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(01):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(01):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(01):18.

备注/Memo

备注/Memo:
 基金项目:国家自然科学基金(11871181);国家自然科学基金专项基金(11226127);黑龙江省自然科学基金(2018006)
更新日期/Last Update: 2019-03-26