[1]王莉莉,刘洪波,陈德运,等. 基于谱投影梯度的电容层析成像图像重建算法[J].哈尔滨理工大学学报,2018,(04):64-68.[doi:10.15938/j.jhust.2018.04.012]
 WANG Li li,LIU Hong bo,CHEN De yun,et al. Image Reconstruction Algorithm Based on Spectral Projected Gradient Pursuit for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2018,(04):64-68.[doi:10.15938/j.jhust.2018.04.012]
点击复制

 基于谱投影梯度的电容层析成像图像重建算法
()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年04期
页码:
64-68
栏目:
计算机与控制工程
出版日期:
2018-08-25

文章信息/Info

Title:
 Image Reconstruction Algorithm Based on Spectral Projected 
Gradient Pursuit for Electrical Capacitance Tomography
作者:
 王莉莉刘洪波陈德运陈峰
 哈尔滨理工大学 计算机科学与技术学院,黑龙江 哈尔滨 150080
Author(s):
 WANG LiliLIU HongboCHEN DeyunCHEN Feng
 School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China
关键词:
关键词:电容层析成像图像重建谱投影梯度方向追踪
Keywords:
 Keywords:electrical capacitance tomographyimage reconstructionspectral projected gradient pursuittrack direction
分类号:
TP3914
DOI:
10.15938/j.jhust.2018.04.012
文献标志码:
A
摘要:
摘要:针对图像重建问题,基于谱投影梯度算法对电容层析成像系统进行图像重建算法。该算法结合ECT的工作原理,以方向追踪为目标,根据谱投影梯度计算更新方向和步长,同时为了避免因收敛导致局部最优解,引入了非单调搜索策略,使精度与速度达到平衡。通过该算法对典型的流型进行仿真实验,并与传统LBP算法对比,结果表明该算法的重建精度得到提高,该方法为ECT图像重建提供了一个新的研究思路。
Abstract:
 Abstract:Accuracy and speed are important indicators to detect the image reconstruction algorithm for electrical capacitance tomography In recent years, although many image reconstruction algorithms have been studied, they can not achieve desired results Aiming at the problem of image reconstruction, in this paper, image reconstruction algorithm based on spectral projection gradient algorithm for electrical capacitance tomography system is carried out. The algorithm combines the principle of ECT, direction tracking regard as a target, updating direction and step size are on spectral projection gradient. To avoid the local optimal solution, induce nonmonotonic search strategy is introduced to balance the accuracy and speed Simulation experiment of typical flow pattern is carried out by the algorithm, and compared with the traditional LBP algorithm The results show that the reconstruction accuracy of the proposed algorithm is improved This method provides a new research perspective for ECT image reconstruction

参考文献/References:

 
[1]LOSER T,WAJMAN R,MEWES DElectrical Capacitance Tomography: Image Reconstruction Along Electrical Field Lines[J].Measurement Science & Technology,2001,12(8):1083-1091
[2]XIE C G,PLASKOWSKI A,BECK M S8electrode Capacitance System for Twocomponent Flow IdentificationPart 1:Tomographic Flow Imaging[J].Iee Proceedings A,1989,136(4):173-183
[3]赵玉磊,郭宝龙,闫允一电容层析成像技术的研究进展与分析[J].仪器仪表学报,2012, 33(8):1909-1920
[4]于金平,陈德运,王莉莉一种基于禁忌搜索的电容层析成像图像重建算法[J] 哈尔滨理工大学学报,2016,01:51-56
[5]陈德运,陈宇,王莉莉,等基于改进GaussNewton的电容层析成像图像重建算法[J].电子学报,2009,37(4):739-743
[6]马平,周晓宁,田沛过程层析成像技术的发展及应用[J].化工自动化及仪表,2009, 36(1):1-5
[7]李利品,党瑞荣,黄燕群层析成像技术在多相流中的研究动态[J].地球物理学进展, 2012,27(2):651-659
[8]BLUMENSATH T,DAVIES M EGradient Pursuits[J].IEEE Transactions on Signal Processing, 2008,56(6):2370-2382
[9]张云龙,陈德运,王莉莉一种基于期望最大化条件的电容层析成像图像重建算法[J]. 哈尔滨理工大学学报,2016(2):13-19
[10]KG*2〗BLUMENBACH T,DAVIES M EStagewise Weak Gradient PursuitsPart II:Theoretical Properties[J].Signal Processing IEEE Transactions on,2009,57(11):4333 - 4346
[11]KG*2〗李志林图像压缩感知重建算法研究[D].北京交通大学博士论文,2012
[12]KG*2〗DAI Y H,FLETCHER RProjected BarzilaiBorwein Methods for Largescale Boxconstrained Quadratic Programming[J].Numerische Mathematik,2005,100(1):21-47
[13]KG*2〗GARY L,JOHN HSociety for Industrial and Applied Mathematics[J].Science,2003, 151(1):3-4
[14]KG*2〗ZHANG H,HAGER WA Nonmonotone Line Search Technique and Its Application to Unconstrained Optimization[J].Siam J Optim,2004,14(4):1043-10564
[15]KG*2〗SHI Z J, SHEN JConvergence of Nonmonotone Line Search Method[J].Journal of Computational & Applied Mathematics,2006,193(2):397-412

相似文献/References:

[1]姚玉梅,陈德运,林甲楠,等.一种多小波电容层析成像图像融合方法[J].哈尔滨理工大学学报,2014,(05):88.
 YAO Yu-mei,CHEDe-yun,LlJia-nan,et al.Image Fusion Method Based on Multi Wavelet Transform for Electrical Capacitance Tomography[J].哈尔滨理工大学学报,2014,(04):88.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(60572153,60972127);高等学校博士学科点专项科研基金(200802140001);黑龙江省自然科学基金(QC2012C059);黑龙江省教育厅科学技术研究项目(11541040,12511097)

更新日期/Last Update: 2018-10-25