[1]张光宇,刘琳婧,徐芮,等. 石墨烯基全固态平面超级电容器电化学性能[J].哈尔滨理工大学学报,2018,(03):139-142.[doi:10.15938/j.jhust.2018.03.024]
 ZHANG Guang-yu,LIU Lin-jing,XU Rui,et al. Electrochemical Properties of Graphene-based All-solid-state Planar Supercapacitors[J].哈尔滨理工大学学报,2018,(03):139-142.[doi:10.15938/j.jhust.2018.03.024]
点击复制

 石墨烯基全固态平面超级电容器电化学性能()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2018年03期
页码:
139-142
栏目:
材料科学与工程
出版日期:
2018-06-25

文章信息/Info

Title:
 Electrochemical Properties of Graphene-based All-solid-state Planar Supercapacitors
作者:
 张光宇刘琳婧徐芮王欣李闯吕胤霖陈玉娟朱大福杨昕瑞
 哈尔滨理工大学 应用科学学院,黑龙江 哈尔滨 150080
Author(s):
 ZHANG Guang-yuLIU Lin-jingXU RuiWANG XinLI ChuangLv Yin-linCHEN Yu-juanZHU Da-fuYANG Xin-rui
 School of Applied Sciences, Harbin University of Science and Technology, Harbin 150080, China
关键词:
 关键词:平面超级电容器凝胶电解质双电层循环伏安
Keywords:
 Keywords:planar supercapacitors gel electrolyte electric double layer cyclic voltammetry
分类号:
O646
DOI:
10.15938/j.jhust.2018.03.024
文献标志码:
A
摘要:
 摘要:针对全固态平面超级电容器性能偏低的问题,采用一种由在硅片上直接生长的方法制备出石墨烯薄膜作为电极,利用双电层超级电容器工作原理,采用PVA/H2SO4凝胶电解质,制备得到石墨烯基全固态平面超级电容器。循环伏安测试结果表明:该超级电容器具有双电层电容特性。循环伏安曲线没有氧化还原峰,说明双电层电容完全提供电极的容量。当扫描速率为50mV/s时,该超级电容器的循环伏安特性较好,面积比电容为290.24μFcm-2,能量密度为22.68μWhcm-2。为平面微型超级电容器的研究提供了重要参考。
Abstract:
 Abstract:For a problem of low performance of planar supercapacitors, graphene films were prepared by a method of direct growth on silicon wafers as electrodes, and PVA/H2SO4 is used as gel electrolyte. Graphenebased allsolidstate planar supercapacitor was prepared with working principle of electric double layer capacitor. The results of cyclic voltammetry showed that the supercapacitor had characteristics of double layer capacitance, and there was no redox peak in the cyclic voltammetry curves, indicating that the electric double layer provided capacity of electrodes. When the scanning rate was 50mV/s, the supercapacitor had better performance of cyclic voltammetry. The area capacitance was 290.24μFcm-2 and the energy density was 22.68μWhcm-2. This paper provides an important reference for further research on planar microsupercapacitors.

参考文献/References:

 

[1]FRACKOWIAK E. Carbon Materials for Application [J]. Physical Chemistry Chemical Physics Pccp, 2007, 9(15):1774-85.
[2]LAMBERT S M, PICKERT V, et al. Comparison of Supercapacitor and Lithiumion Capacitor Technologies for Power Electronics Applications [C]// Iet International Conference on Power Electronics, Machines and Drives. IET, 2010:241-241.
[3]ELZBIETA F, QAMAR A, et al. Carbon/carbonSupercapacitors [J], Journal of Energy Chemistry, 2013, 22 : 226-240.
[4]MINATO E, TAKUMA I, et al. DeterminingWater Content in Activated Carbon for Doublelayer Capacitor Electrodes [J]. Journal of Power Sources, 2016(3): 1-6.
[5]KATARZYNA L, AGNIESZKA S, et al. TheCapacitance Properties of Activated Carbon Obtained from Chitosan as the Electrode Material for Electrochemical Capacitors [J]. Materials Letters, 2016, 173 : 72-75.
[6]HUI S Y. Planar Wireless Charging Technology for Portable Electronic Products and Qi [J]. Proceedings of the IEEE, 2013, 101(6):1290-1301.
[7]SHNAWAH D A, SABRI M F M, et al. A Review on Thermal Cycling and Drop Impact Reliability of SAC Solder Joint in Portable Electronic Products [J]. Microelectronics Reliability, 2012, 52(1):90-99.
[8]LI R, PENG R, et al. Highrate inplane Microsupercapacitors Scribed onto Photo Paper using insitu Femtolaserreduced Graphene Oxide/Au Nanoparticle Microelectrodes [J]. Energy & Environmental Science, 2016, 9(4):1458-1467.
[9]LIU Z, WU Z, et al. Ultraflexible InPlane MicroSupercapacitors by Direct Printing of SolutionProcessable Electrochemically Exfoliated Graphene [J]. Advanced Materials, 2016, 28(11):2217-2222.
[10]ZHOU XiaoLin, WANG Min, et al. Supercapacitors Based on Highsurfacearea Graphene [J]. Science China, 2014, 2 : 278-283. 
[11]HSIA B, MARSCHEWSKI J, Wang S, et al. Highly Flexible, all solidstate Microsupercapacitors from Vertically Aligned Carbon Nanotubes [J]. Nanotechnology, 2014, 25(5):55401-55409.
[12]BEIDAGHI M, WANG C. Supercapacitors: MicroSupercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance [J]. Advanced Functional Materials, 2012, 22(21):4501-4510.
[13]HU H, PEI Z, et al. Recent Advances in Designing and Fabrication of Planar Microsupercapacitors for onchip Energy Storage[J]. Energy Storage Materials, 2015(1):82-102.
[14]SUN G, AN J, et al. Layerbylayer Printing of Laminated Graphenebased Interdigitated Microelectrodes for Flexible Planar Microsupercapacitors [J]. Electrochemistry Communications, 2015, 51:33-36.
[15]KURRA N, JIANG Q, et al. A General Strategy for the Fabrication of High Performance Microsupercapacitors [J]. Nano Energy, 2015(16):1-9.
[16]CHEN Y, XU J, et al. Enhanced Electrochemical Performance of Laser Scribed Graphene Films Decorated with Manganese Dioxide Nanoparticles [J]. Journal of Materials Science Materials in Electronics, 2016, 27(3):2564-2573.
[17]WU ZS, FENG X, CHENG HM. Recent Advances in Graphenebased Planar Microsupercapacitors for Onchip Energy Storage [J]. National Science Review, 2014, 1(2):277-292.
[18]YOO JJ, BALAKRISHNAN K, et al. Ultrathin Planar Graphene Supercapacitors [J], Nano Letters, 2011, 11: 1423-1427
[19]WU ZS, PARVEZ K, et al. Graphenebased Inplane Microsupercapacitors with High Power and Energy Densities [J]. Nature Communications, 2013(10):1038.
[20]WU ZS, PARVEZ K, et al. Photolithographic Fabrication of Highperformance Allsolidstate Graphenebased Planar Microsupercapacitors with Different Interdigital Fingers [J]. Journal of Materials Chemistry A, 2014, 2(22):8288-8293.

 

相似文献/References:

[1]孙永全,郭建英,陈洪科,等.AMSAA模型可靠性增长预测方法的改进[J].哈尔滨理工大学学报,2010,(05):49.
 SUN Yong-quan,GUO Jian-ying,CHEN Hong-ke,et al.An Improved Reliability Growth Prediction Algorithm Based on AMSAA Model[J].哈尔滨理工大学学报,2010,(03):49.
[2]滕志军,李晓霞,郑权龙,等.矿井巷道的MIMO信道几何模型及其信道容量分析[J].哈尔滨理工大学学报,2012,(02):14.
 TENG Zhi-jun,LI Xiao-xia,ZHENG Quan-long.Geometric Model for Mine MIMO Channels and Its Capacity Analysis[J].哈尔滨理工大学学报,2012,(03):14.
[3]李艳苹,张礼勇.新训练序列下的改进OFDM符号定时算法[J].哈尔滨理工大学学报,2012,(02):19.
 LI Yan-ping,ZHANG Li-yong.An Improved Algorithm of OFDM Symbol Timing Based on A New Training Sequence[J].哈尔滨理工大学学报,2012,(03):19.
[4]赵彦玲,车春雨,铉佳平,等.钢球全表面螺旋线展开机构运动特性分析[J].哈尔滨理工大学学报,2013,(01):37.
 ZHAO Yan-ling,CHE Chun-yu,XUAN Jia-ping,et al.[J].哈尔滨理工大学学报,2013,(03):37.
[5]李冬梅,卢旸,刘伟华,等.一类具有连续接种的自治SEIR传染病模型[J].哈尔滨理工大学学报,2013,(01):73.
 LI Dong-mei,LU Yang,LIU Wei-hua.[J].哈尔滨理工大学学报,2013,(03):73.
[6]华秀英,刘文德.奇Hamiltonian李超代数偶部的非负Z-齐次导子空间[J].哈尔滨理工大学学报,2013,(01):76.
 HUA Xiu-ying,LIU Wen-de.[J].哈尔滨理工大学学报,2013,(03):76.
[7]桂存兵,刘洋,何业军,等.基于LCC谐振电路阻抗匹配的光伏发电最大功率点跟踪[J].哈尔滨理工大学学报,2013,(01):90.
 GUI Cun-bing,LIU Yong,HE Ye-jun.[J].哈尔滨理工大学学报,2013,(03):90.
[8]翁凌,闫利文,夏乾善,等.PI/TiC@Al2O3复合薄膜的制备及其电性能研究[J].哈尔滨理工大学学报,2013,(02):25.
 WENG Ling,YAN Li-wen,XIA Qian-shan.[J].哈尔滨理工大学学报,2013,(03):25.
[9]姜彬,林爱琴,王松涛,等.高速铣刀安全性设计理论与方法[J].哈尔滨理工大学学报,2013,(02):63.
 JIANG Bin,LIN Ai-qin,WANG Song-tao,et al.[J].哈尔滨理工大学学报,2013,(03):63.
[10]李星纬,李晓东,张颖彧,等.EVOH 磺酸锂电池隔膜的制备及微观形貌[J].哈尔滨理工大学学报,2013,(05):18.
 LI Xing- wei,LI Xiao- dong,ZHANG Ying- yu,et al.The Preparation and Microcosmic Morphology oEVOH- SO Li Lithium Ion Battery Septum[J].哈尔滨理工大学学报,2013,(03):18.

备注/Memo

备注/Memo:
 基金项目: 黑龙江省大学生创新创业训练计划项目(201510214050).
更新日期/Last Update: 2018-10-19