[1]李兴华,姜明红.一类延迟积分方程的概周期解[J].哈尔滨理工大学学报,2013,(05):119-122.
 LI Xing- hua,JIANG Ming- hong.Almost Periodic Solution for Some Delay Integral Equation[J].哈尔滨理工大学学报,2013,(05):119-122.
点击复制

一类延迟积分方程的概周期解()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2013年05期
页码:
119-122
栏目:
数理科学
出版日期:
2013-10-25

文章信息/Info

Title:
Almost Periodic Solution for Some Delay Integral Equation
作者:
李兴华 姜明红
哈尔滨理工大学 应用科学学院
Author(s):
LI Xing- hua JIANG Ming- hong
School of Applied Science,Harbin University of Science and Technology
关键词:
概周期解 延迟积分方程 不动点理论
Keywords:
almost periodic solution delay integral equation fixed point theory
分类号:
O177. 7
文献标志码:
A
摘要:
摘 要:在积分方程的研究领域中, 延迟积分方程的各种解的存在性成了重要的研究课题. 因
为这类方程最早是关于传染病建立起来的. 其中一类方程的延迟是常数时的概周期型解已经被有
关文献讨论. 本文是把这类方程的延迟改为依赖变量, 应用关于 Hilbert 投影度量的不动点理论, 研
究其概周期解的存在性, 这样会使这类方程应用得更广.
Abstract:
Abstract: The existence of all kinds of solutions for integral equations becomes important research topics in the
study fields of integral equations. Since this kind of equation was established about epidemic problem early,almost
periodic type solutions were discussed for the kind of equation with the constant delay by relevant literature. The
existence of almost periodic solution is investigated for this kind of integral equation with the delay by constant into
dependence on argument by some fixed point theorem on Hilbert projective metric in this paper, . Thus,this kind of
integral equation can be used more widely.

备注/Memo

备注/Memo:
黑龙江省教育厅2011 年度科学技术研究项目( 12511110)
更新日期/Last Update: 2013-12-26