[1]李晶婧,崔云安.具R(X)<2的自反Banach空间中的M不动点性质[J].哈尔滨理工大学学报,2009,(05):97-99.
 LI Jing-jing,CUI Yun-an.M fixed Point Property in Reflexive Banach Space with R(X)<2[J].哈尔滨理工大学学报,2009,(05):97-99.
点击复制

具R(X)<2的自反Banach空间中的M不动点性质()
分享到:

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

卷:
期数:
2009年05期
页码:
97-99
栏目:
数理科学
出版日期:
2009-10-25

文章信息/Info

Title:
M fixed Point Property in Reflexive Banach Space with R(X)<2
作者:
李晶婧; 崔云安;
哈尔滨理工大学应用科学学院;
Author(s):
LI Jing-jing; CUI Yun-an
School of Applied Science; Harbin University of Science and Technology; Harbin 150080; China
关键词:
M非扩张映射 不变 渐进不动点序列 M不动点性质
Keywords:
M-nonexpansive mapping invariant approximated fixed point sequence M fixed point property
分类号:
O177.91
文献标志码:
A
摘要:
对于Banach空间中的两个有界闭凸集,首先引入一个新的度量,并且在这种新的度量下重新定义非扩张映射,称它为M非扩张映射,并且证明在一个自反的Banach空间中,当R(X)<2时,它有M不动点性质.
Abstract:
We first introduce a new metric between two bounded closed subsets of a Banach space and with this new metric we redefind the nonexpansive mapping,which we call M-nonexpansive mapping.It proved that in a reflexive Banach space with R(X)<2 has the M fixed point property.

备注/Memo

备注/Memo:
国家自然基金资助项目(10571037);; 黑龙江海外学人资助项目
更新日期/Last Update: 2009-12-16