|Table of Contents|

Structural Optimization Design of Tripod Assembly of Steel Plate Climbing Robot

(PDF)

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

Issue:
2019年01期
Page:
23-28
Research Field:
机械动力工程
Publishing date:

Info

Title:
Structural Optimization Design of Tripod Assembly of Steel Plate Climbing Robot

Author(s):
 ZENG Hong1WEI Xudong2FENG Fan3
 (1Rongcheng Campus,Harbin University of Science and Technology,Rongcheng 264300,China;
2School of Mechanical and Power Engineering,Harbin University of Science and Technology,Harbin 150080,China;
3College of Mechanical and Electronic Engineering, China University of Petroleum,Qingdao 266580,China)
Keywords:
 Keywords:robot triangular plate combination finite element analysis parameter sensitivity analysis
PACS:
TP2422
DOI:
10.15938/j.jhust.2019.01.004
Abstract:
 Abstract:As an important supporting part of the crawler wallclimbing robot, the mechanical properties of the tripod assembly determine the reliability of the large area welding operation of the hull In this paper, based on the adsorption force of steel plate, finite element analysis is performed on the tripod assembly of the wallclimbing welding robot to obtain the force, deformation and the first four modes of the model Then we analyze and solve the relevant results, and the structure of the tripod assembly is optimized by the method of parameter sensitivity analysis Using ANSYS Workbench software to simulate the optimized structure, the deformation and stress values of the total assembly are reduced to a certain degree, and the form of modal shape changed to a more stable translational or swing state Optimized combination improves the smoothness of the robot′s movement and provides technical support for the stability of largearea hull welding quality

References:

[1]SCHMIDT D,BERNS K.Climbing Robots for Maintenance and Inspections of Vertical StructuresA Survey of Design Aspects and Technologies[J]. Robotics and Autonomous Systems,2003(61):1288.
[2]YBERLE J.Application of Climbing Robot Rosy Ⅱ in the Business of Building Conservation[J].Iaarc, 1998: 111.
[3]吴明晖.面向焊接任务的轮足式非接触磁吸附爬壁机器人的研究[D].上海:上海交通大学,2014:6.
[4]李志梅,付宜利,王树国.四轮驱动滑动吸盘爬壁机器人的动力学研究[J].机器人,2010,9(32):601.
[5]SCHMIDT D C,HILENBRAND K, et al.Omnidirectional Locomotion and Traction Control of the Wheeldriven Wallclimbing Robot CROMSCI[J].Robotica,2011,29:991.
[6]衣正尧, 弓永军,等. 新型除锈爬壁机器人附壁建模与仿真[J]. 四川大学学报,2011,43(3):211.
[7]孙玲,王祖温. 船舶除锈机器人转向运动学分析[J]. 机械设计与制造,2014, 7(7):189.
[8]仝建刚,马培荪,陈俊梅. 履带式磁吸附爬壁机器人壁面适应能力的研究[J]. 上海交通大学学报,1999,33(7):851.
[9]梁君,赵登峰. 模态分析方法综述[J]. 现代制造工程,2006(8):139.
[10]KRZYSZTOF T, ROBOT M.Instantaneous Kinematics and Dexterity of Mobile Manipulators[C]// Proceeding of IEEE International Conference on Robotics and Automation,2000:2493.
[11]濮良贵,陈国定. 机械设计(第九版) [M]. 北京:高等教育出版社,2013.
[12]刘超峰,张功学. DVG850高速立式加工中心主轴箱灵敏度分析[J]. 组合机床与自动化加工技术,2010(5):88.

Memo

Memo:
-
Last Update: 2019-03-26