|Table of Contents|

 The Study of Maps Completely Preserving *Jordan ZeroProducts
on Factor von Neumann Algebras
(PDF)

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

Issue:
2018年06期
Page:
151-156
Research Field:
数理科学
Publishing date:

Info

Title:
 The Study of Maps Completely Preserving *Jordan ZeroProducts
on Factor von Neumann Algebras
Author(s):
 LIU HongyuHUO Donghua
 School of Mathematical Sciences, Mudanjiang Normal University, Mudanjiang 157012, China
Keywords:
 Keywords:bilateral complete preserving *Jordan zeroproducts bilateral 2preserving *Jordan zeroproducts factor von Neumann algebras
PACS:
O1522
DOI:
10.15938/j.jhust.2018.06.027
Abstract:
 Abstract:In order to characterize the maps completely preserving *Jordan zeroproducts on factor von Neumann algebras, according to the definition of bilateral complete preserving *Jordan zeroproducts and bilateral 2preserving *Jordan zeroproducts, taking a completely preserve approach, it is proved that if Φ is a surjection of von Neumann algebra A to B,then Φis the nonzero scalar multiple of linear or conjugate linear*isomorphism

References:

[1]CUI J L, LI C K Maps Preserving Product XY-YX* on Factor von Neumann Algebra[J] Linear Algebra and Its Applications, 2009, 431:833-842
[2]BAI Z F, DU S P Maps Preserving Products XY-YX* on von Neumann Algebras [J] Journal of Mathematical Analysis and Applications, 2012, 386(1):103-109
[3]LIU L, GUO X Maps Preserving Product X*Y+YX* on Factor von Neumann Algebra [J] Linear and Multilinear Algebra, 2011, 59:951-955
[4]LI C J, LU F Y, FANG X Nonlinear Mappings Preserving Product XY-YX* on Factor von Neumann Algebra[J] Linear Algebra and Its Applications, 2013, 438:2339-2345
[5]焦美艳 Von Neumann代数套子代数上保因子交换性的线性映射[J] 数学学报,2014,57(2):409-416
[6]CUI J L, PARK C Strong Lie Skewproducts Preserving Maps on Factor Von Neumann Algebra[J]. Acta Math Sci, 2012,32B(2): 531-538
[7]QI X F, HOU J C Strong Skew Commutativity Preserving Maps on Von Neumann Algebras[J]. J Math Anal Appl, 2013, 397: 362-370
[8]齐霄霏,侯晋川 保持斜 Lie 零积的可加映射[J] 中国科学杂志社,2015,45(2):151-165
[9]CHEN C, LU F Y Nonlinear Maps Preserving Higher Dimensional Numerical Range of Skew Lie Product of Operators [J] Operator and Matrices, 2016, 10(2):335-344 
[10]〖JP2〗HOU J C, HUANG L Characterizing Isomorphisms in Terms of Completely Preserving Invertibility or Spectrum [J] Journal of Mathematical Analysis and Applications, 2009, 359(1): 81-87
[11]〖JP2〗黄丽,路召飞,李俊林 标准算子代数上完全保斜幂等性的可加映射[J] 中北大学学报: 自然科学版,2011,32(1):71-73
[12]HUANG L, LIU Y X Maps Completely Preserving Commutativity and Maps Completely Preserving Jordan Zeroproduct[J] Linear Algebra and Its Applications, 2014, 462(12):233-249
[13]刘艳晓,黄丽 完全保持不同因子交换性的映射[J] 太原科技大学学报,2015,36(3):237-240
[14]李文慧 完全保持斜Jordan零积和斜交换性映射的研究[D] 太原:太原科技大学,2017

Memo

Memo:
-
Last Update: 2019-03-26