|Table of Contents|

 A Personalized Recommendation Algorithm for Mobile Application(PDF)

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

Issue:
2018年06期
Page:
116-123
Research Field:
计算机与控制工程
Publishing date:

Info

Title:
 A Personalized Recommendation Algorithm for Mobile Application
Author(s):
 SHANG YanfeiCHEN DeyunYANG Hailu
 School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080
Keywords:
Keywords:mobile applicationrecommendation algorithmthe accuracy of recommendingpersonalized information
PACS:
TP393.08
DOI:
10.15938/j.jhust.2018.06.021
Abstract:
 Abstract:For the problem of low precision to both experience satisfaction and personalized requirement of Internet mobile terminal, based on the recommendation method of analyzing information system, a method of mobile APP information recommendation based on user similarity and subject similarity is proposed, which generated information recommendation by the weighted combination of user similarity and personalized, that the recommended information is more personalized, and the recommended accuracy is improved. At the same time, a recommendation algorithm based on complex interest is proposed, which makes the recommendation information more accurate by mining the similarity between users, the behavior of users and the orientation of interest for the recommendation problem of multiuser public account and interest change. Compared with the Popular which has better performance, the algorithm improves the accuracy rate by 3.91%, the recall rate is 3.45%, the coverage rate is improved by 4.84%, and the performance is improved obviously. Therefore, the method proposed in this paper is used to the personalized recommendation of APP, which provides a new method for mobile APP′s personalized recommendation.

References:

 [1]ADOMAVICIUS G,TUZHILIN A.Towards the Next Generation of Recommender Systems:a Survey of the Stateoftheart and Possible Extensions [J].IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
[2]林钦.一种基于网页剪辑的信息推荐系统[J].鲁东大学学报(自然科学版),2012,28(4):319-321.
[3]李涛.推荐系统中若干关键问题研究[D].南京:南京航空航天大学,2008.
[4]徐海玲,吴潇,李晓东,等.互联网推荐系统比较研究[J].软件学报,2009,20(2):250-362.
[5]林钦.一种协同过滤的移动APP推荐算法的设计[D].鲁东大学学报(自然科学版),2015,31(4):309-312.
[6]荣辉桂,火生旭,胡春华等.基于用户相似度的协同过滤推荐算法[J].通讯学报,2014,2:16-24.
[7]严晓光,褚学征.聚类在网络入侵的异常检测中的应用[J].计算机系统应用,2005:34-37.
[8]EBBINGHAUS H.MEMORY:A Contribution to Experimental Psychology[J].Annals of Neurosciences,2013,20 (4):155-156.
[9]CHA M,HADDADI H.Measuring User Influence in Twitter: The Million Follower Fallacy[J].Icwsm′10 Proceedings of International Aaai Conference on Weblogs&Social,2010(2):7-8.
[10]KIM Younghoon.TWITOBI:A Recommendation System for Twitter Using Probabilistic Modeling[C]//2013 IEEE 13th International Conference on DatMining IEEE,2011:340-349.
[11]KWAK H,LEE C.What is Twitter,asocialnetwork or a News Media[C]//Proceedings of the 19th International Conference on World Wide Web.ACM,2010:591-600.
[12]任磊.一种结合评分时间特性的协同推荐算法[J].计算机应用与软件,2015(05):12-21.
[13]王立才,孟祥武,张玉洁.上下文感知推荐系统[J].软件学报,2012,23(1) : 1-20.
[14]王帅,兰少华.基于显式和隐式社交网络的混合推荐[J].计算机应用与软件,2016(11):56-57.
[15]高明.面向微博系统的实时个性化推荐[J].计算机学报,2014(4):963-975.
[16]朱郁筱.推荐系统评价指标综述[J].电子科技大学报,2012(3):163-175.
[17]RESNICK,Paul,Neophytos,Suchak,Mitesh,et al. GroupLens:an Open Architecture for Collaborative Filtering of Netnews[C]∥In Proceedings of the1994 ACM conference on Computer supported cooperative work.Chapel Hill,USA,1994:175-186.
[18]SARWAR B,KARYPIS G,KONSTAN J,et al.Itembased Collaborative Filter Recommendation Algorithms[C]∥Proceedings of the 10th intemational conference on World Wide Web,Hong Kong,China,2001:285-295.
[19]SALAKHUTDINOV R, AndriyMnih.Probabilistic Matrix Factorization.Advances in Neural Information Processing Systems,2008:1257-1264.
[20]孙晓会.基于用户行为的个性化新闻推荐系统研究[D].成都:电子科技大学,2015:22-24.

Memo

Memo:
-
Last Update: 2019-03-26