|Table of Contents|

Algorithm of 3D Face Location Using Geodesic Distance(PDF)

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

Issue:
2018年06期
Page:
110-115
Research Field:
计算机与控制工程
Publishing date:

Info

Title:
Algorithm of 3D Face Location Using Geodesic Distance
Author(s):
 LIN Xuan-jiLIN Ke-zhengSUN Yi-diWEI Ying
 School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China
Keywords:
 Keywords:face location geodesic distance wiener filtering nose tip location
PACS:
TP3914
DOI:
10.15938/j.jhust.2018.06.020
Abstract:
 Abstract:The traditional twodimensionnal face positoning unable overcome the rotation, expression, posture, and own a low accuracy in the location We join the geodesic distance on the 3D face modle and proposed the algorithm of threedimension location using geodesic distance We use wiener filtering to preprocess the 3dimentional face datas for the detecting image and confirm the location of the face by finding the location of nose point in the preprocessing image called nose tip location Then we unify the human faces to the same coordinate frame Finally, and mark the face region to be detected in the resulting image The algorithm makes the experiment on FRGC face database and BU3DFE face database, uses the depth information positioning method and spiders feature point positioning methods for comparing The experimental results show that our algorithm of positioning accuracy is higher, stronger and has good robustness

References:

 [1]穆新亮 基于混合核函数的快速KPCA人脸识别算法[J]. 电子科技, 2015, 28(2): 46-50
[2]林克正, 王浩, 辛晨 SIFT算法的相似性度量优化[J].哈尔滨理工大学学报, 2012, 17(3): 78-82
[3]张石请, 赵小明, 楼宋江 一种局部敏感的核稀疏表示分类算法[J]. 光电子激光, 2014, 25(9): 1812-1817
[4]梁礼明, 钟震, 陈召阳 支持向量机核函数选择研究与仿真[J]. 计算机工程与科学, 2015, 37(6): 1135-1141
[5]马小虎, 谭延琪 基于鉴别稀疏保持嵌入的人脸识别算法[J]. 自动化学报, 2014, 40(1):73-82
[6]陈幼芬, 宋海生 一种鲁棒性强的光照人脸预处理算法[J]. 科技通报, 2014, 30(11): 168-172
[7]陆焱, 惠巧娟 改进的统计模型三维人脸特征点标定算法框架[J]. 计算机工程与应用, 2016,52(24):166-170
[8]赵泉华, 高郡, 李玉 基于区域划分的多特征纹理图像分割[J]. 仪器仪表学报, 2015, 36(11):2519-2530
[9]SUN Y, WANG X, TANG X Deeply Learned Face Representations are Sparse, Selective, and Robust[J]. Computer Science, 2015:2892-2900
[10]WU T, TURAGA P, CHELLAPPA R Age Estimation and Face Verification Across Aging Using Landmarks[J]. IEEE Transactions on Information Forensics & Security, 2012, 7(6):1780-1788
[11]LENC L, KRAL P Automatic Face Recognition System Based on The SIFT Features[J]. Computers and Electrical Engineering, 2015, 456: 256-272
[12]HAN T L, LIU G W, CAI H, et al The Face Detection and Location System Based on Zynq[C]// the 2014 10th international conference on natural computation 2014:835-839
[13]PEREIRA C J, TEATINI E O, SARCINELLI M Face Tracking in Unconstrained Color Videos with the Recovery of the Location of Lost Faces[J]. IEEE Latin America Transactions, 2015, 13(1):307-314

Memo

Memo:
-
Last Update: 2019-03-21