|Table of Contents|

 Fault Diagnosis Based on Piecewise Least Square Support Vector Machine(PDF)

《哈尔滨理工大学学报》[ISSN:1007-2683/CN:23-1404/N]

Issue:
2018年06期
Page:
94-99
Research Field:
电气与电子工程
Publishing date:

Info

Title:
 Fault Diagnosis Based on Piecewise Least Square Support Vector Machine
Author(s):
 L NingJIANG Huaibin
 School of Automation, Harbin University of Science and Technology, Harbin 150080, China
Keywords:
 Keywords:support vector machinefuzzy C mean clusteringleast squares support vector machine beer fermentationmodeling
PACS:
TP2063
DOI:
10.15938/j.jhust.2018.06.017
Abstract:
 Abstract:In the process of beer fermentation, in order to establish the precise temperature sensor fault diagnosis model, on the basis of standard support vector machine (SVM), We proposed piecewise least square support vector machine method, first using fuzzy cmeans clustering (FCM) of the sample of poly class analysis to divide fermentation stage and the establishment of local model Then the least square support vector machine (LSSVM) method is used for modeling of various types of samples The experimental results show that the model has a high accuracy in the process of temperature fault diagnosis of beer fermentation process After comparison, the proposed method establishes the model’s generalization ability better than other SVM methods to build the model

References:

 [1]张旭 青霉素间歇过程故障诊断方法研究[D].沈阳:沈阳理工大学,2012
[2]熊伟丽,王肖,陈敏芳,徐保国 基于加权LSSVM的青霉素发酵过程建模[J]. 化工学报,2012(9):2913-2919
[3]CHIANG L H,RUSSELL F L,BRAATZ R D.Fault detection and diagnosis in industrial systems[J].Springer,2001(9):317-335
[4]Lin C T,Juang C F,LiCP.Temperature Control with a Neural Fuzzy Inference Network [J].IEEE TransStstMan,Cybern1999,C(29):440-451.
[5]刘树启,徐光宪,刘建辉.啤酒发酵过程监控系统研究[J],辽宁工程技术大学学报,2002,21(2):224-226.
[6]阳同光,桂卫华基于 KPCA 与 RVM 感应电机故障诊断研究[J].电机与控制学报,2016,20(9):89-95
[7]张志艳,马宏忠,杨存祥,等 小波包与样本熵相融合的PMSM失磁故障诊断[J].电机与控制学报,2015,19(02):26-32
[8]VAAG Pet alCharaeterization of a Beer Foam Protein Originating From Barley[J].EBC Congress,1999,25:157-166.
[9]杨奎河,单甘霖,赵玲玲基于最小二乘支持向量机的故障诊断方法[J].计算机应用研究,2007(7):99-101
[10]边莉,边晨源 采用交叉熵支持向量机和模糊积分的电网故障诊断[J].电机与控制学报,2016,20(2):112-120
[11]MARCU T, KOPPENSELIGER B, STUCHER R Design of Fault Detection for a Hydraulic Looper Using Dynamic Neural Networks[M]. 16OXFORD, 2008,192-213
[12]VAAG Pet alCharaeterization of a Beer Foam Protein Originating From Barley[J].EBC Congress,1999,25:157-166.
[13]蔡艳宁,胡昌华,汪洪桥,等.基于自适应动态无偏 LSSVM 的故障在线监测[J].机电工程,2013(1):56-57.
[14]高学金,王普,孙崇正,易建强,张亚庭,张会清 分阶段建立发酵过程模型的方法的研究和应用[J]. 系统仿真学报,2007,11:2574-2577
[15]杨小梅,刘文琦,杨俊 基于分阶段的LSSVM发酵过程建模[J]. 化工学报,2013,09:3262-3269
[16]ELTAWEEL Gh S,HELMY A K.An Edge Detection Scheme Based on Least Squares Support Vector Machine in a Contourlet HMT Domain[J].Applied Soft Computing Journal,2014,32(6):211-223.
[17]王强,陈欢欢,王珽一种基于多类支持向量机的故障诊断算法[J].电机与控制学报,2009,02:302-306
[18]张继军,马登武,邓力,范庚. LSSVM参数估计与稀疏化方法研究及应用[J]. 系统仿真学报,2014,05:1113-1117.
[19]HIROFUMI Osada,HIDEKI Tanemura.Strong Markov Property of Determinantal Processes with Extended Kernels[J].Stochastic Processes and their Applications,2016,41:686-702.
[20]公彦杰 基于LSSVM建立发酵过程动态模型的研究及软件实现[D].北京工业大学,2010
[21]刘斌,苏宏业,王强.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2010(8):173-177.
[22]武俊峰,艾岭一种基于改进聚类算法的模糊识别辨识[J].哈尔滨理工大学学报,2010(3):1-5

Memo

Memo:
-
Last Update: 2019-03-21